KLASIFIKASI OPPORTUNITY MENGGUNAKAN ALGORITMA C4.5, C4.5 DAN NAÏVE BAYES BERBASIS PARTICLE SWARM OPTIMIZATION
DOI:
https://doi.org/10.33480/inti.v14i2.1178Keywords:
Algoritma C4.5, Naïve Bayes, Particle Swarm Optimization.Abstract
Predicting an opportunity whether to be successful (buy) or not (no), with the aim to increase selling for target achievement of marketing. Marketing is required to find a good opportunity so that it can be a prospect of sales in great value and the long term. In this research, the dataset is taken from a CRM application (Customer Relationship Management) at PT. XYZ, sales of telesales team in January - March 2016. From these results, the PSO-based C4.5 algorithm has the highest accuracy and AUC value. In this research comparative algorithms C4.5, C4.5 based PSO, and Naïve Bayes using Confusion Matrix testing methods and ROC curves. The highest accuracy value using PSO-based C4.5 algorithm is 80,90% with AUC value 0.833 is good classification, next is Naïve Bayes based PSO algorithm with accuracy value equal to 83,15% and value of AUC 0,894 is good classification, the last C4.5 algorithm the lowest accuracy value of 66.67% with AUC 0.592 is failure classification. From these results, the PSO-based C4.5 algorithm has the highest accuracy.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.