OPTIMASI NAIVE BAYES BERBASIS PSO UNTUK ANALISA SENTIMEN PERKEMBANGAN ARTIFICIAL INTELLIGENCE DI TWITTER
Abstract
At present the development of Artificial Intelligence technology is progressing rapidly. There are many new artificial intelligence technologies available in various fields. Artificial Intelligence is an artificial intelligence program that can study data, perform processes of thinking and acting like humans. The presence of Artificial Intelligence technology has many positive impacts, especially in increasing work effectiveness and efficiency. However, AI is also a threat to human resources because slowly human work is being replaced by Artificial Intelligence. Various opinions about the development of Artificial Intelligence are widely discussed on social media such as Twitter. Sentiment analysis is a computational study to automatically categorize opinions into positive or negative categories. In this study, the Naive Bayes algorithm was used to analyze sentiment or public opinion regarding the development of Artificial Intelligence for Twitter users. The data collection method used is crawling data on Twitter. The results of the sentiment classification test for the development of Artificial Intelligence using Naive Bayes yield an accuracy value of 86.42%. Meanwhile, the results of the sentiment classification test using Naive Bayes based on Particle Swarm Optimization (PSO) increased with an accuracy value of 87.55%. Based on the results of this study, the use of PSO as an optimization technique for the Naive Bayes algorithm is proven to be the best algorithm model in sentiment analysis for the development of Artificial Intelligence for English text.
Downloads
References
Al Hadyd, A. (2023). 10 Dampak Positif dan Negatif Penerapan AI (Artificial Intelligence).
Artanti, D. P., Syukur, A., Prihandono, A., & Setiadi, D. R. I. M. (2018). Analisa Sentimen Untuk Penilaian Pelayanan Situs Belanja Online Menggunakan Algoritma Naive Bayes, 8–9.
Astuti, T., & Astuti, Y. (2022). Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization ( PSO ), 6, 1806–1815. https://doi.org/10.30865/mib.v6i4.4119
Darmawan, R., Indra, I., & Surahmat, A. (2022). Optimalisasi Support Vector Machine (SVM) Berbasis Particle Swarm Optimization (PSO) Pada Analisis Sentimen Terhadap Official Account Ruang Guru di Twitter. Jurnal Kajian Ilmiah, 22(2), 143–152. https://doi.org/10.31599/jki.v22i2.1130
Hannani, N. (2019). “Pengertian Twitter.”
Indrayuni, E., Nurhadi, A., & Kristiyanti, D. A. (2021). Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc. Faktor Exacta, 14(2), 64. https://doi.org/10.30998/faktorexacta.v14i2.9697
Jimenez-Gomez, C. E., Cano-Carrillo, J., & Falcone Lanas, F. (2020). Artificial Intelligence in Government. Computer, 53(10), 23–27. https://doi.org/10.1109/mc.2020.3010043
Kristiyanti, D. A., Normah, & Umam, A. H. (2019). Prediction of Indonesia presidential election results for the 2019-2024 period using twitter sentiment analysis. Proceedings of 2019 5th International Conference on New Media Studies, CONMEDIA 2019, 36–42. https://doi.org/10.1109/CONMEDIA46929.2019.8981823
Legiawati, N., Hermanto, T. I., & Ramadhan, Y. R. (2022). Analisis Sentimen Opini Pengguna Twitter Terhadap Perusahaan Jasa Ekspedisi Menggunakan Algoritma Naïve Bayes Berbasis PSO, 9(4), 930–937. https://doi.org/10.30865/jurikom.v9i4.4629
Pakpahan, R. (2021). Analisa Pengaruh Implementasi Artificial Intelligence Dalam Kehidupan Manusia. Journal of Information System, Informatics and Computing, 5(2), 506–513. https://doi.org/10.52362/jisicom.v5i2.616
Purnomo, M., Maulina, E., Wicaksono, A. R., & Rizal, M. (2021). Implementasi Technology Acceptance Model terhadap Adopsi Teknologi Artificial Intelligence pada Startup Digital. Jurnal Manajemen Dan Kewirausahaan, 9(2), 173–181. https://doi.org/10.26905/jmdk.v9i2.6516
Putra, T. D., Utami, E., & P.Kurniawan, M. (2022). Analisis Sentimen Pemilu 2024 dengan Naive Bayes Berbasis Particle Swarm Optimization (PSO). Explore, 13(1), 1–5.
Safra, I. A., Zuliarso, E., Studi, P., Informatika, T., Informasi, F. T., Stikubank, U., & Timur, K. (2020). Analisa Sentimen Persepsi Masyarakat Terhadap Pemindahan Ibukota Baru di Kalimantan Timur pada Media Sosial Twitter, 978–979.
Samsir, Ambiyar, Verawardina, U., Edi, F., & Watrianthos, R. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naive Bayes. Jurnal Media Informatika Budidarma, 5(1), 157. https://doi.org/10.30865/mib.v5i1.2604
Sianipar, C. M. (2019). Jumlah Pengguna Twitter Indonesia Naik Pesat. Tagar.Id.
Supriyadi, E. I., & Asih, D. B. (2020). Implementasi Artificial Intelligence (AI) di Bidang Administrasi Publik Pada Era Revolusi Industri 4.0. Jurnal Sosial Dan Humaniora Universitas Muhammadiyah Bandung, 2(2), 12–23. https://doi.org/10.1007/978-3-030-55190-2_49
Copyright (c) 2023 Elly Indrayuni, Acmad Nurhadi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.