PENERAPAN K-MEANS DAN K-MEDOIDS BERBASIS RFM PADA SEGMENTASI PELANGGAN DI MASA PANDEMI COVID-19

  • Sri Watmah Universitas Bina Sarana Informatika
  • Dwiza Riana Universitas Nusa Mandiri
  • Rachmawati Darma Astuti Universitas Bina Sarana Informatika
Keywords: DBI, K-Means, K-Medoids, RFM, segment

Abstract

The outbreak of the CORONA virus in Indonesia in early March 2020 has created unrest, especially in the business world. The impact caused some small and medium-sized businesses to go out of business, so the right marketing strategy is needed to maintain and increase customer loyalty. The purpose of this research is to segment PT Megadaya Maju Selaras' customers based on their characteristics by comparing the RFM-based K-Means and K-Medoids algorithms as attributes in the research. The dataset used comes from the purchase transaction data of PT Megadaya Maju Selaras customers. Experiments in this study used the CRISP-DM model. The results showed that the K-Means algorithm has a smaller Davies Bouldin Index (DBI) value than K-Medoids, meaning that the K-Means method is the right method for this research. With the K-Means method, the overall data shows the optimal k in cluster 4 with a DBI value of 0.286, the data before the pandemic shows the optimal k value in cluster 2 with a DBI value of 0.299, after the pandemic shows the optimal k in cluster 5 with a DBI value of 0.278. The overall data is divided into 4 segments, namely superstar, typical customer, occational customer and dormant customer. Data before the pandemic is divided into 2 segments, namely typical customers and superstars. Meanwhile, after the pandemic is divided into 5 segments, namely typical customer, occational customer, golden customer, dormant customer and superstar. With this research, PT Megadaya Maju Selaras can provide the right service for each customer group.

Downloads

Download data is not yet available.

References

Anggara, N. A. A., Hutahaean, J., & Iqbal, M. (2022). Penerapan Customer Relationship Management (CRM) Dalam Sistem Informasi Penjualan Kosmetik Berbasis Web. Building of Informatics, Technology and Science (BITS), 3(4), 480–488.

Ariati, I., Norsa, R. N., Akhsan, L., & Jerry, H. (2023). Segmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasus Pelanggan Uht Milk Greenfield. 3(7), 629–643.

Carudin. (2021). Pemanfaatan Data Transaksi untuk Dasar membangun Strategi berdasarkan Karakteristik Pelanggan dengan Algoritma K-Means Clustering dan Model RFM. Jurnal Teknologi Terpadu, 7(1), 7–14.

Harahap, M., Lubis, Y., & Situmorang, Z. (2022). Analisis Pemasaran Bisnis dengan Data Science : Segmentasi Kepribadian Pelanggan berdasarkan Algoritma K-Means Clustering. Data Sciences Indonesia (DSI), 1(2), 76–88.

Idowu, S. (2020). Customer Segmentation Based on RFM Model Using K-Means , Hierarchical and Fuzzy C- Means Clustering Algorithms. June. https://doi.org/10.13140/RG.2.2.15379.71201

Iskandar, M. A., & Latifa, U. (2023). Website Prediksi Customer Churn Untuk Mempertahankan Pelanggan Pada Perusahaan Telekomunikasi. JATI (Jurnal Mahasiswa Teknik Informatika), 7(2), 1308–1316.

Jupriyanto, J., & Nurlela, S. (2019). Kerangka Pengambilan Keputusan Untuk Pemasaran Presisi Menggunakan Metode RFM, Algoritma K-Means Dan Decision Tree. Jurnal Pilar Nusa Mandiri, 15(2), 227-234.

Kurnia, C. A. (2020). Dampak Pandemi Covid-19 dan Perubahan Pola Administrasi terhadap Pelaku UMKM Ekspor dan Impor (Studi terhadap Pengusaha Ekspor dan Impor di Banda Aceh). AL-IJTIMA`I-International Journal of Government and Social Science, 6(1), 1–12.

Lantemona, I. A., Masinambow, V. A., & Walewangko, E. N. (2023). Analisis Ekspor Dimasa Pendemi Covid-19 Dan Sebelum Pandemi Covid-19 Di Provinsi Sulawesi Utara. Jurnal Pembangunan Ekonomi Dan Keuangan Daerah, 24(4), 407-419.

Prakasawati, P. E., Chrisnanto, Y. H., & Hadiana, A. I. (2019). Segmentasi Pelanggan Berdasarkan Produk Menggunakan Metode K- Medoids. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 335–339.

Ramadhan, D. R., & Rokhman, N. (2020). Segmentation-Based Sequential Rules For Product Promotion Recommendations As Sales Strategy (Case Study: Dayra Store). IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 14(3), 243.

Sheila, A. N., Witanti, W., & Sabrina Nurul, P. (2020). Segmentasi Pelanggan Berdasarkan Keluhan dengan Menggunakan K-Means Cluster Analysis pada PT Infomedia Nusantara. Prosiding Seminar Nasional Sistem Informasi Dan Teknologi (SISFOTEK), 276–280.

Shihab, S. H., Afroge, S., & Mishu, S. Z. (2019). RFM Based Market Segmentation Approach Using Advanced K-means and Agglomerative Clustering: A Comparative Study. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 7–9.

Widiyanto, A. T., & Witanti, A. (2021). Segmentasi Pelanggan Berdasarkan Analisis RFM Menggunakan Algoritma K-Means Sebagai Dasar Strategi Pemasaran (Studi Kasus PT Coversuper Indonesia Global). KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 1(1), 204–215.

Zuniawan, A., Dimas, R., Kusuma, P., Supriatna, H., Maryani, E., Purwanto, A., & Fahlevi, M. (2020). The Covid-19 Pandemic Impact On Industries Performance: An Explorative Study Of Indonesian Companies. Journal of Critical Reviews, 7(15), 2020.

Published
2024-02-13
How to Cite
Watmah, S., Riana, D., & Astuti, R. (2024). PENERAPAN K-MEANS DAN K-MEDOIDS BERBASIS RFM PADA SEGMENTASI PELANGGAN DI MASA PANDEMI COVID-19. INTI Nusa Mandiri, 18(2), 192-200. https://doi.org/10.33480/inti.v18i2.4963