PENERAPAN POLA FIBONACCI UNTUK PENGATURAN QOS (QUALITY OF SERVICE) JARINGAN

Authors

  • Ahmad Gani Universitas Bina Sarana Informatika
  • Sigit Wibawa Universitas Bina Sarana Informatika
  • Fadli Ilyas Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.33480/inti.v19i2.6359

Keywords:

bandwidth allocation, delay control, fibonacci pattern, QoS, network

Abstract

In managing network quality of service (QoS), this research uses the Fibonacci pattern to optimize delay control and bandwidth allocation. QoS is very important in contemporary network management, especially considering the increasing demand for stable and effective data services. This study prioritizes data based on traffic levels using a Fibonacci algorithm simulation. Each priority is assigned a value corresponding to the Fibonacci sequence, which allows for resource allocation that is more in line with network load.The simulation was conducted under normal and overload conditions. The research results show that conventional methods, such as round-robin and weighted fair queuing, can improve QoS efficiency with the Fibonacci pattern by up to 15%. This improvement primarily focuses on managing important data packets such as real-time communication and video streaming, and reducing latency. Additionally, this technique is better at adapting to traffic changes.The research results show that the Fibonacci pattern can be an innovative method for managing network QoS, especially for complex priority needs. By using the Fibonacci pattern as a data priority management technique, this research helps improve network quality of service (QoS). This method is capable of improving bandwidth allocation efficiency and reducing latency by up to 15% compared to conventional approaches such as Round-Robin and Weighted Fair Queuing. The main contribution of this research is to offer a new approach based on Fibonacci patterns that can be adapted to the dynamics of network traffic.

Downloads

Download data is not yet available.

References

Abood, M. S., Wang, H., Virdee, B. S., He, D., Fathy, M., Yusuf, A. A., Jamal, O., Elwi, T. A., Alibakhshikenari, M., Kouhalvandi, L., & Ahmad, A. (2024). Improved 5G network slicing for enhanced QoS against attack in SDN environment using deep learning. IET Communications, 18(13), 759–777. https://doi.org/10.1049/cmu2.12735

Akter, S., Bhuiyan, K. I., Badhon, B., & Hasan, H. (2024). Quantum-Edge Cloud Computing for IoT : Bridging the Gap between Cloud , Edge , and Quantum Technologies. 99–120. https://doi.org/10.4236/ait.2024.144006

Effendy, C., & Gusrianty, G. (2024). Application of Round Robin in Scheduling in Web-Based Wedding Organizers. Journal of Applied Business and Technology, 5(2), 90–95. https://doi.org/10.35145/jabt.v5i2.150

Faishal Bari, R., Solehudin, A., & Heryana, N. (2022). Analisis Quality of Service (QoS) Jaringan Internet Berbasis Wireless Local Area Network pada Layanan Indihome. Jurnal Ilmiah Wahana Pendidikan, 8(10), 320–335.

Fei, H., Jia, D., Zhang, B., Li, C., Zhang, Y., Luo, T., & Zhou, J. (2024). A novel energy efficient QoS secure routing algorithm for WSNs. Scientific Reports, 14(1), 25969. https://doi.org/10.1038/s41598-024-77686-y

Hadad, E. I. N. Al, & Prapanca, A. (2023). Analisis Kualitas Layanan Jaringan Internet Menggunakan Metode Quality Of Service (QoS) Dan Reliability, Maintainability And Availability (RMA)(Studi Kasus: SMK …. Journal of Informatics and …, 04, 414–422. https://ejournal.unesa.ac.id/index.php/jinacs/article/view/54021%0Ahttps://ejournal.unesa.ac.id/index.php/jinacs/article/download/54021/43034

Harahap, Y. P., & Prapanca, A. (2021). Analisis Algoritma Penjadwalan Priority Queueing (PQ) terhadap Quality of Service (QoS) pada Jaringan Mobile WiMAX menggunakan OPNET Modeler. Journal of Informatics and Computer Science (JINACS), 3(02), 104–112. https://doi.org/10.26740/jinacs.v3n02.p104-112

Hu, Y., & Lei, Y. (2021). A container cloud scheduling strategy based on QoS. ACM International Conference Proceeding Series, PartF16898. https://doi.org/10.1145/3448734.3450872

Kochanska, I., Schmidt, J. H., & Schmidt, A. M. (2021). Study of probe signal bandwidth influence on estimation of coherence bandwidth for underwater acoustic communication channel. Applied Acoustics, 183, 108331. https://doi.org/10.1016/j.apacoust.2021.108331

M.Aldi, A., Qashlim, A. A., & Multazam, A. emi. (2023). Analisis Kualitas Jaringan Wireless Dan Fiber Optik Menggunakan Metode Quality of Service (Qos). Journal Peqguruang: Conference Series, 5(2), 789. https://doi.org/10.35329/jp.v5i2.4429

Mohammadzadeh, A., Masdari, M., & Gharehchopogh, F. S. (2021). Energy and Cost-Aware Workflow Scheduling in Cloud Computing Data Centers Using a Multi-objective Optimization Algorithm. In Journal of Network and Systems Management (Vol. 29, Issue 3). Springer US. https://doi.org/10.1007/s10922-021-09599-4

Rebari, P., & Killi, B. R. (2023). Deep Learning Based Traffic Prediction for Resource Allocation in Multi-Tenant Virtualized 5G Networks. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 97–102. https://doi.org/10.1109/TENCON58879.2023.10322446

Shabbir, A., Rizvi, S., Shirazi, M. F., Alam, M. M., & Su’ud, M. M. (2024). Maximizing energy efficiency in HetNets through centralized and distributed sleep strategies under QoS constraint. Scientific Reports, 14(1), 25839. https://doi.org/10.1038/s41598-024-70714-x

Son, C. X., Tu, D. T. T., Nga, N. T. T., Dung, N. T., & Van Tan, N. (2022). A Frequency and Radiation Pattern Reconfigurable Antenna Using Composed Structure of Pseudo-Fibonacci and DGS for 5G IoT/ WiFi 6/CR Applications. Journal of Communications, 17(12), 1003–1008. https://doi.org/10.12720/jcm.17.12.1003-1008

Tran-Ngoc, H., Le-Xuan, T., Khatir, S., De Roeck, G., Bui-Tien, T., & Abdel Wahab, M. (2023). A promising approach using Fibonacci sequence-based optimization algorithms and advanced computing. Scientific Reports, 13(1), 1–10. https://doi.org/10.1038/s41598-023-28367-9

Wassie, G., Ding, J., & Wondie, Y. (2023). Traffic prediction in SDN for explainable QoS using deep learning approach. Scientific Reports, 13(1), 1–15. https://doi.org/10.1038/s41598-023-46471-8

Wassie, G., Ding, J., & Wondie, Y. (2024). Detecting and Predicting Models for QoS Optimization in SDN. 2024. https://doi.org/10.1155/2024/3073388

Downloads

Published

2025-02-18

How to Cite

Gani, A., Wibawa, S., & Ilyas , F. (2025). PENERAPAN POLA FIBONACCI UNTUK PENGATURAN QOS (QUALITY OF SERVICE) JARINGAN. INTI Nusa Mandiri, 19(2), 267–277. https://doi.org/10.33480/inti.v19i2.6359