PENERAPAN DECISION TREE DENGAN PENYEIMBANGAN DATA IMBALANCE MENGGUNAKAN UPSAMPLING DALAM PREDIKSI PENYAKIT LIVER

Penulis

  • Agung Fazriansyah Universitas Bina Sarana Informatika
  • Yuris Alkhalifi Universitas Bina Sarana Informatika
  • Ainun Zumarniansyah Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.33480/inti.v19i2.6369

Kata Kunci:

classification, decision tree, imbalance data, liver disease

Abstrak

Acute liver disease has a significant impact on liver function and is often only detected at an advanced stage due to the lack of patient awareness for early examination.  One of the challenges in treating liver disease is the delay in diagnosis, where many patients do not notice the early symptoms until their condition has worsened.  Therefore, a predictive system is needed that can identify liver disease patients early on, allowing for regular check-ups and timely treatment.  In this study, a classification model was developed using a machine learning approach, specifically the Decision Tree algorithm, by balancing the data in the minority class through upsampling.  The research results show that this model is capable of predicting liver disease status with an accuracy rate of 89.22%, a recall of 88.45%, a precision of 83.21%, and an f1-score of 85.78%.  In addition, the ROC-AUC value of 0.89 is categorized as a good classification.  This model achieved a higher accuracy score than other studies with similar datasets.  This system is expected to help improve early detection and expedite the treatment of liver disease patients.

Unduhan

Data unduhan belum tersedia.

Referensi

Aldana, S., & Wibowo, J. S. (2024). Penerapan Data Mining Terhadap Klasifikasi Pasien Penderita Penyakit Liver Menggunakan Metode K-Nearest Neighbor. Progresif: Jurnal Ilmiah Komputer, 20(1), 124–132. https://doi.org/10.35889/progresif.v20i1.1376

Armaya, A. M. R. (2024). Pengaruh Feature Selection Dan Feature Extraction Dalam Peningkatan Akurasi Klasifikasi Kebakaran Hutan. JuTI “Jurnal Teknologi Informasi,” 3(1), 13. https://doi.org/10.26798/juti.v3i1.1039

Cahyanti, F. L. D., Sarasati, F., Astuti, W., & Firasari, E. (2023). Klasifikasi Data Mining Dengan Algoritma Machine Larning Untuk Prediksi Penyakit Liver. Technologia, 14(2), 134. https://doi.org/10.31602/tji.v14i2.10093

Cahyanto, H. N., Zulkarnain, O., & Rahagia, R. (2024). Pengembangan Deteksi Dini Dan Asuhan Keperawatan Pada Kanker Menggunakan Artificial Intelligence (AI) Berbasis Web. Prepotif : Jurnal Kesehatan Masyarakat, 8. https://doi.org/10.31004/prepotif.v8i3.34374

Desiani, A. (2022). Perbandingan Implementasi Algoritma Naïve Bayes dan K-Nearest Neighbor Pada Klasifikasi Penyakit Hati. SIMKOM, 7(2), 104–110. https://doi.org/10.51717/simkom.v7i2.96

Dhimas Irnawan, F., Hidayah, I., & Nugroho, L. E. (2021). Metode Imputasi pada Data Debit Daerah Aliran Sungai Opak, Provinsi DI Yogyakarta. In Jurnal Nasional Teknik Elektro dan Teknologi Informasi | (Vol. 10, Issue 4). https://doi.org/10.22146/jnteti.v10i4.2430

Dritsas, E., & Trigka, M. (2023). Supervised Machine Learning Models for Liver Disease Risk Prediction. Computers, 12(1), 19. https://doi.org/10.3390/computers12010019

Fadri, W. (2023). Jurnal Informasi dan Teknologi Klasifikasi Penyakit Hati dengan Menggunakan Metode Naive Bayes. Jurnal Informasi Dan Teknologi, 5(1), 32–37. https://doi.org/10.37034/jidt.v5i1.230

Firmansyah, Y., Kurniawan, R., & Wijaya, Y. A. (2024). Analisis Data Sentimen Pemain Game Role-Playing Game (RPG) Honkai Star Rail dengan Algoritma Naive Bayes. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 6(1). https://doi.org/10.36499/jinrpl.v6i1.10243

Ghalib, F., & Wasilah, W. (2023). Deteksi Dini Kanker Payudara Menggunakan Algoritma K-Nearest Neighbour (KNN) dan Decision Tree C-45. TEKNIKA, 17(2), 1–5. https://doi.org/10.5281/zenodo.8412264

He, H. (2023). Research and Application of Different Machine Learning Algorithms in ILPD Risk Prediction Model. 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI), 1330–1334. https://doi.org/10.1109/ICETCI57876.2023.10176951

Hidayat, R., Haris, M., & Simbolon, Z. K. (2024). Implementasi Metode Support Vector Machine (SVM) Pada Klasifikasi Drop Out (DO) Mahasiswa.

Jeyalakshmi, K., & Rangaraj, R. (2021). Accurate Liver Disease Prediction System using Convolutional Neural Network. Indian Journal of Science and Technology, 14(17), 1406–1421. https://doi.org/10.17485/IJST/v14i17.451

Karnadi, B., & Handhayani, T. (2024). Klasifikasi Jenis Buah dengan Menggunakan Metode MobileNetv2 dan Inceptionv3. Jurnal Eksplora Informatika, 14(1), 35–42. https://doi.org/10.30864/eksplora.v14i1.1067

Nasrullah, A. H. (2021). Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris. Jurnal Ilmiah Ilmu Komputer, 7(2). https://doi.org/10.35329/jiik.v7i2.203

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 5, Issue 2).

Prasetyo, M. A., Zyen, A. K., & Kusumodestoni, R. H. (2024). Optimasi Algoritma Naive Bayes Berbasis Kernel Untuk Klasifikasi Penyakit Hati. Jurnal Informatika Teknologi Dan Sains, 6(3). https://doi.org/10.51401/jinteks.v6i3.4783

Qadrini, L., Seppewali, A., & Aina, A. (2021). Decision Tree Dan Adaboost Pada Klasifikasi Penerima Program Bantuan Sosial. Jurnal Inovasi Pendidikan, 7(2), 1959–1966. https://doi.org/10.47492/jip.v2i7.1046

Raharja, A. R., Pramudianto, A., & Muchsam, Y. (2024). Penerapan Algoritma Decision Tree dalam Klasifikasi Data “Framingham” Untuk Menunjukkan Risiko Seseorang Terkena Penyakit Jantung dalam 10 Tahun Mendatang. Technologia Journal, 1. https://doi.org/10.62872/cwgzp962

Rina, R., Hasan, P. M., Ayu, N., & Adi Saputra, R. (2024). Klasifikasi Keringanan Ukt Mahasiswa Uho Menggunakan K-Nearest Neighbor (KNN). Jurnal Mahasiswa Teknik Informatika, 8(6). https://doi.org/10.36040/jati.v8i6.11757

Singgalen, Y. A. (2022). Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier. Building of Informatics, Technology and Science (BITS), 4(3). https://doi.org/10.47065/bits.v4i3.2486

UCI Machine Learning, & Crawford, C. (2018). Indian Liver Patient Records. Kaggle. https://www.kaggle.com/datasets/uciml/indian-liver-patient-records

Yunitasari, Hopipah, S. H., & Mayasari, R. (2021). Optimasi Backward Elimination untuk Klasifikasi Kepuasan Pelanggan Menggunakan Algoritme k-Nearest Neighbor (k-NN) dan. Technomedia Journal (TMJ), 6(1), 99–110. https://doi.org/10.33050/tmj.v6i1

##submission.downloads##

Diterbitkan

2025-02-11

Cara Mengutip

Agung Fazriansyah, Yuris Alkhalifi, & Ainun Zumarniansyah. (2025). PENERAPAN DECISION TREE DENGAN PENYEIMBANGAN DATA IMBALANCE MENGGUNAKAN UPSAMPLING DALAM PREDIKSI PENYAKIT LIVER. INTI Nusa Mandiri, 19(2), 259–266. https://doi.org/10.33480/inti.v19i2.6369