PENINGKATAN AKURASI KNN DALAM PREDIKSI KELULUSAN MAHASISWA MELALUI OPTIMASI PARAMETER PSO
DOI:
https://doi.org/10.33480/inti.v20i1.7076Kata Kunci:
Classification, Feature Selection, Graduation Prediction, K-NN, PSOAbstrak
Predicting student graduation is a crucial aspect in supporting academic planning and ensuring timely completion of studies. However, no prior research has specifically applied the integration of K-Nearest Neighbor (KNN) and Particle Swarm Optimization (PSO) for graduation prediction using student data. This study aims to evaluate the effectiveness of combining KNN and PSO in improving classification accuracy. The KNN algorithm is used for classification, while PSO is implemented as a feature selection technique to identify the most relevant attributes. A dataset of 750 student records was processed through data preprocessing and attribute weighting using PSO, followed by model training and evaluation with 10-fold cross-validation. The evaluation results show that the KNN+PSO model improves accuracy from 80.91% to 84.31%, along with increases in precision and recall. These findings indicate that PSO enhances the performance of KNN, particularly in identifying students likely to graduate on time
Unduhan
Referensi
Hamid, A., & Ridwansyah. (2024). Optimizing Heart Failure Detection : A Comparison between Naive Bayes and Particle Swarm Optimization. Paradigma, 26(1), 30–36. https://doi.org/https://doi.org/10.31294/p.v26i1.3284
Iqbal, M., Yumi Novita Dewi, Lisnawanty, Maisyaroh, & Suhardjono. (2025). Optimalisasi Prediksi Dalam Kelulusan Berbasis Deep Learning : Perbandingan Kinerja Multi- Layer Perceptron dan Deep Neural Network. Infotek : Jurnal Informatika Dan Teknolog, 8(2), 630–641. https://doi.org/DOI : 10.29408/jit.v8i2.30756
Kahfi, A. H., Prihatin, T., Yudhistira, Sudradjat, A., & Wijaya, G. (2024). THE RIGHT STEPS TOWARDS GRADUATION: NB-PSO SMART COMBINATION FOR STUDENT GRADUATION PREDICTION. Jurnal Teknik Informatika (Jutif), 5(2), 607–614. https://doi.org/https://doi.org/10.52436/1.jutif.2024.5.2.1889
Karmagatri, M., Kurnianingrum, D., Suciana, M. R., & Utami, S. A. (2023). Predicting Factors Related to Student Performance Using Decision Tree Algorithm. International Conference on Cybernetics and Intelligent System (ICORIS). https://doi.org/10.1109/ICORIS60118.2023.10352269
Kurniawati, G., & Maulidevi, N. U. (2022). Multivariate Sequential Modelling for Student Performance and Graduation Prediction. International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE). https://doi.org/10.1109/ICITACEE55701.2022.9923971
Liao, X. (2023). Research and enlightenment on the Graduation Rate of American Universities Based on Panel Data. International Conference on Management Engineering, Software Engineering and Service Sciences (ICMSS). https://doi.org/10.1109/ICMSS56787.2023.10118079
Lin, K. (2023). Research on Graduation Destination Prediction Algorithm Based on Students’ Learning Behavior Data. Asian Conference on Artificial Intelligence Technology (ACAIT). https://doi.org/10.1109/ACAIT60137.2023.10528473
Nurdin, H., Sartini, Sumarna, Maulana, Y. I., & Riyanto, V. (2023). Prediction of Student Graduation with the Neural Network Method Based on Particle Swarm Optimization. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 8(4), 2353–2362. https://doi.org/10.33395/sinkron.v8i4.12973
Ong, D. P., & Pedrasa, J. R. I. (2021). Student Risk Assessment: Predicting Undergraduate Student Graduation Probability Using Logistic Regression, SVM, and ANN. TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON). https://doi.org/10.1109/TENCON54134.2021.9707322
Pangesti, W. E., Ariyati, I., Priyono, Sugiono, & Suryadithia, R. (2024). Utilizing Genetic Algorithms To Enhance Student Graduation Prediction With Neural Networks. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 9(1), 276–284. https://doi.org/https://doi.org/10.33395/sinkron.v9i1.13161 e-ISSN
Rawatlal, R., Chetty, M., & Naicker, A. K. (2022). Latent Factors for Consistently Predicting Student Success. World Engineering Education Forum - Global Engineering Deans Council (WEEF-GEDC). https://doi.org/10.1109/WEEF-GEDC54384.2022.9996209
Ridwansyah, Andharsaputri, R. L., Yudhistira, Irmawati Carolina, & Suharjanti. (2025). K-Nearest Neighbors Optimization using Particle Swarm Optimization in Selection Digital Payments. Jurnal Teknologi Informasi Dan Terapan (J-TIT), 12(1), 1–8. https://doi.org/https://doi.org/10.25047/jtit.v12i1.5911
Ridwansyah, Iqbal, M., Destiana, H., Sugiono, & Hamid, A. (2024). Data Mining Berbasis Machine Learning Untuk Analitik Prediktif Dalam Kelulusan. SemanTIK, 10(2), 1–10. https://doi.org/https://doi.org/10.55679/semantik.v10i2.67
Rukiastiandari, S., Luthfia Rohimah, Aprillia, Chodidjah, & Fara Mutia. (2025). Model Hibrida K-Nearest Neighbors Berbasis Genethic Algorithm untuk Prediksi Penyakit Ginjal Kronis. Infotek : Jurnal Informatika Dan Teknologi, 8(1), 44–55. https://doi.org/10.29408/jit.v8i1.27918
Rukiastiandari, S., Rohimah, L., Aprillia, A., & Mutia, F. (2024). Predicting Graduation Outcomes: Decision Tree Model Enhanced with Genetic Algorithm. Paradigma - Jurnal Komputer Dan Informatika, 26(1), 1–6. https://doi.org/10.31294/p.v26i1.3165
Sumarna, Nawawi, I., Suhardjono, Hari Sugiarto, & Yuliandari, D. (2024). MENINGKATKAN AKURASI PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN METODE ALGORITMA GENETIKA. Jurnal Informatika, Manajemen Dan Komputer, 16(2). https://doi.org/http://dx.doi.org/10.36723/juri.v16i2.706
Widodo, S., Brawijaya, H., & Samudi, S. (2024). Building a Predictive Model for Chronic Kidney Disease: Integrating KNN and PSO. Paradigma - Jurnal Komputer Dan Informatika, 26(1), 58–64. https://doi.org/10.31294/p.v26i1.3282
##submission.downloads##
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Yessica Fara Desvia, Febryawan Yuda Pratama, Ganda Wijaya

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.