FACIAL RECOGNITION SYSTEM FOR DISTANCE LEARNING STUDENT ATTENDANCE MANAGEMENT USING MACHINE LEARNING

Authors

  • Agus Sriyanto
  • Alif Sahputra Universitas AMIKOM Yogyakarta
  • Arif Wahyu Nugroho Universitas AMIKOM Yogyakarta
  • Bryan Hans Lobya Universitas AMIKOM Yogyakarta
  • Kusrini Kusrini Universitas AMIKOM Yogyakarta

DOI:

https://doi.org/10.33480/jitk.v11i1.6304

Keywords:

Automated Attendance System, attendance system , facial recognition , machine learning

Abstract

The administration of student attendance constitutes a vital component of academic governance, affecting both educational outcomes and institutional efficacy. Utilizing machine learning to augment precision and efficacy, with adaptability for both physical and remote learning environments. The research methodology encompasses the acquisition of facial data from students under diverse lighting conditions, perspectives, and remote settings, succeeded by preprocessing and training of a facial recognition algorithm employing machine learning techniques. The system addresses key technical challenges such as camera quality variations, lighting inconsistencies, and spoofing risks by integrating robust image preprocessing and security safeguards. Quantitative evaluation shows that under ideal and controlled conditions, the system achieves up to 100% accuracy with an average processing time of 0.8 seconds. With the specifications Intel Core i5, RAM8 GB, minimum windows 10, NVIDIA GeForce GTX 1050, 1080p minimum camera with 30 fps frame rate, standard CMOS sensor, and automatic exposure adjustment capabilities, accuracy will drop if the conditions are not ideal. The system ensures the security and privacy of student facial because it is live with zoom or LMS. Furthermore, the incorporation of this system facilitates the realization of smart campus initiatives by delivering precise, real-time attendance information. This inquiry contributes to educational technology, enhancing operational efficacy and fostering digital transformation within higher education institutions. The designed system also seeks to reduce overall student attendance fraud.

Downloads

Download data is not yet available.

References

S. R. Jantan, A. Rasli, A. J. Mohd Zainudin, N. W. Mustafa@Dain, and M. G. Khairuzzaman, “Smart Attendance for Faculty Monitoring System Using the Bluetooth Low Energy: Design and Implementation,” 2022, doi: 10.20944/preprints202211.0001.v1.

J. Nithya, S. R. Vignesh, A. Devadarsan, and S. Venkatesh, “AI Based Contactless Attendance Monitoring and Management System,” Int J Health Sci (Qassim), 2022, doi: 10.53730/ijhs.v6ns3.8365.

T. Tsai, J.-X. Lu, X.-Y. Chou, and C.-Y. Wang, “Joint Masked Face Recognition and Temperature Measurement System Using Convolutional Neural Networks,” Sensors, 2023, doi: 10.3390/s23062901.

B. Jin, L. Cruz, and N. Gonçalves, “Deep Facial Diagnosis: Deep Transfer Learning From Face Recognition to Facial Diagnosis,” Ieee Access, 2020, doi: 10.1109/access.2020.3005687.

J. V. N. L. Mythili, M. Pravin, and S. D. Sanjay, “Face recognition using LBPH algorithm,” International Journal of Health Sciences (IJHS), pp. 1360–1367, 2022, doi: 10.53730/ijhs.v6ns6.9747.

M. S. Z. bin Ahmad, N. A. Ab. Aziz, and A. K. Ghazali, “Development of Automated Attendance System Using Pretrained Deep Learning Models,” International Journal on Robotics Automation and Sciences, vol. 6, no. 1, pp. 6–12, 2024, doi: 10.33093/ijoras.2024.6.1.2.

O. Dagade, T. Janjire, S. Jagdale, and S. Jawanjal, “Face Recognition Attendance Monitoring System,” Int J Res Appl Sci Eng Technol, vol. 11, no. 10, pp. 1598–1601, 2023, doi: 10.22214/ijraset.2023.56266.

K. Alhanaee, M. Alhammadi, N. Almenhali, and M. Shatnawi, “Face recognition smart attendance system using deep transfer learning,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 4093–4102. doi: 10.1016/j.procs.2021.09.184.

E. G, M. A. Raj, V. Nithya, K. Karthigadevi., and S. R, “An Automatic Face Recognition Using Local Binary Pattern Histogram (LBPH) Algorithm,” 2023, pp. 642–648. doi: 10.1109/iceca58529.2023.10395878.

K. Ramalakshmi, B. J. Jingle, C. P. Shirley, V. Suvisheik, J. B. P. P, and K. Vidhya, “Facial Recognition System with LBPH Algorithm: Implementation in Python for Machine Learning,” pp. 1681–1686, 2024, doi: 10.1109/icoici62503.2024.10696268.

N. Beri, V. Srivastava, and N. Malik, “Face Recognition Attendance Management System using LBPH and Haar Cascade,” Journal of Trends in Computer Science and Smart Technology, vol. 6, no. 3, pp. 257–273, 2024, doi: 10.36548/jtcsst.2024.3.004.

D. Sharma and B. K. Singh, “Smart CCTV Detection Using Local Binary Pattern Histogram (LBPH),” International Research Journal on Advanced Science Hub, 2023, doi: 10.47392/irjash.2023.055.

B. Ramakrishna, U. Mariappan, S. Kumar, M. Kumar, R. Yadav, and E. E. Reddy, “Student Attendance Tracking Management using Face Biometric Smart System,” pp. 1–7, 2024, doi: 10.1109/conit61985.2024.10626516.

S. A. -, G. M. -, E. Y. Baagyere, and M. A. M. -, “An Enhanced LBPH Algorithm for Robust Face Feature Extraction,” International Journal For Multidisciplinary Research, vol. 6, no. 5, 2024, doi: 10.36948/ijfmr.2024.v06i05.27853.

A. Saini, G. Dhuriya, A. Jain, and A. Mishra, “Machine Learning Algorithms and Applications,” pp. 1–31, 2024, doi: 10.1201/9781003504900-1.

A. C. Mohamed Nafrees, B. Bharathi, D. Sasubilli, and S. S. Reddy Komma, “Machine Learning Technique for Facial Datasets to Detect Examination Fraudulent Activities in the Online Examination: A Systematic Review Approach,” 2022, doi: 10.1109/ccet56606.2022.10080219.

A. Budiman, Fabian, R. A. Yaputera, S. Achmad, and A. Kurniawan, “Student attendance with face recognition (LBPH or CNN): Systematic literature review,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 31–38. doi: 10.1016/j.procs.2022.12.108.

Mustaqeem, M. Sajjad, and S. Kwon, “Clustering-Based Speech Emotion Recognition by Incorporating Learned Features and Deep BiLSTM,” Ieee Access, 2020, doi: 10.1109/access.2020.2990405.

P. Singh, “Efficient Facial Emotion Detection Through Deep Learning Techniques,” CANA, 2024, doi: 10.52783/cana.v31.690.

K. Kushwaha, S. Rahul, S. Eliyaz, C. Reddy, K. Amarendra, and T. K. R. K. Rao, “A CNN Based Attendance Management System Using Face Recognition,” in Proceedings of the 4th International Conference on Smart Electronics and Communication, ICOSEC 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 880–884. doi: 10.1109/ICOSEC58147.2023.10276353.

M. K. Hossen and M. S. Uddin, “Attention monitoring of students during online classes using XGBoost classifier,” Computers and Education: Artificial Intelligence, vol. 5, Jan. 2023, doi: 10.1016/j.caeai.2023.100191.

M. O. Adio, “Performance Evaluation of Some Selected Classification Algorithms in a Facial Recognition System,” Abuad Journal of Engineering Research and Development (Ajerd), 2024, doi: 10.53982/ajerd.2024.0701.17-j.

D. Saraswat, P. Bhattacharya, T. Shah, R. Satani, and S. Tanwar, “Anti-spoofing-enabled Contactless Attendance Monitoring System in the COVID-19 Pandemic,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 1506–1515. doi: 10.1016/j.procs.2023.01.129.

K. P. Rao* and M. V P. Rao, “Illumination Invariant Facial Expression Recognition Using Convolutional Neural Networks,” International Journal of Recent Technology and Engineering, 2019, doi: 10.35940/ijrte.d8905.118419.

A. Dixit and T. Kasbe, “Multi-Feature Based Automatic Facial Expression Recognition Using Deep Convolutional Neural Network,” Indonesian Journal of Electrical Engineering and Computer Science, 2022, doi: 10.11591/ijeecs.v25.i3.pp1406-1419.

M. Beltrán and M. Calvo, “A privacy threat model for identity verification based on facial recognition,” Comput Secur, vol. 132, Sep. 2023, doi: 10.1016/j.cose.2023.103324.

N. Rathour, R. Singh, A. Gehlot, N. Priyadarshi, and B. Khan, “KlugOculus: A Vision-Based Intelligent Architecture for Security System,” Comput Intell Neurosci, 2022, doi: 10.1155/2022/3722527.

N. Sharma, A. Garg, A. Aeron, and F. Chisti, “Online examination with face recogination,” vol. 04, no. 12, pp. 624–627, 2020, doi: 10.33564/IJEAST.2020.V04I12.112.

I. Adjabi, A. Ouahabi, A. Benzaoui, and A. Taleb‐Ahmed, “Past, Present, and Future of Face Recognition: A Review,” 2020. doi: 10.3390/electronics9081188.

Downloads

Published

2025-08-26

How to Cite

[1]
A. Sriyanto, A. Sahputra, A. W. . Nugroho, B. H. . Lobya, and K. Kusrini, “FACIAL RECOGNITION SYSTEM FOR DISTANCE LEARNING STUDENT ATTENDANCE MANAGEMENT USING MACHINE LEARNING”, jitk, vol. 11, no. 1, pp. 144–153, Aug. 2025.

Most read articles by the same author(s)