IMPROVING HANDWRITTEN DIGIT RECOGNITION USING CYCLEGAN-AUGMENTED DATA WITH CNN–BILSTM HYBRID MODEL

Authors

  • Muhtyas Yugi Universitas Amikom Purwokerto
  • Fandy Setyo Utomo Universitas Amikom Purwokerto
  • Azhari Shouni Barkah Universitas Amikom Purwokerto

DOI:

https://doi.org/10.33480/jitk.v11i2.6982

Keywords:

Bidirectional Long Short-Term Memory (BiLSTM) , Convolutional Neural Network (CNN) , CycleGAN , Data Augmentation , Handwritten Digit Recognition

Abstract

Handwritten digit recognition presents persistent challenges in computer vision due to the high variability in human handwriting styles, which necessitates robust generalization in classification models. This study proposes an advanced data augmentation strategy using Cycle-Consistent Generative Adversarial Networks (CycleGAN) to improve recognition accuracy on the MNIST dataset. Two architectures are evaluated: a standard Convolutional Neural Network (CNN) and a hybrid model combining CNN for spatial feature extraction and Bidirectional Long Short-Term Memory (BiLSTM) for sequential pattern modeling. The CycleGAN-based augmentation generates realistic synthetic images that enrich the training data distribution. Experimental results demonstrate that both models benefit from the augmentation, with the CNN-BiLSTM model achieving the highest accuracy of 99.22%, outperforming the CNN model’s 99.01%. The study’s novelty lies in the integration of CycleGAN-generated data with a CNN–BiLSTM architecture, which has been rarely explored in previous works. These findings contribute to the development of more generalized and accurate deep learning models for handwritten digit classification and similar pattern recognition tasks.

Downloads

Download data is not yet available.

References

A. A. Yahya, J. Tan, and M. Hu, “A Novel Handwritten Digit Classification System Based on Convolutional Neural Network Approach,” Sensors, vol. 21, no. 18, Art. no. 18, Jan. 2021, doi: 10.3390/s21186273.

Azgar ALi, “(PDF) MNIST Handwritten Digit Recognition Using a Deep Learning-based Modified Dual Input Convolutional Neural Network (DICNN) Model,” in ResearchGate, Accessed: Jun. 07, 2025. [Online]. Available: https://www.researchgate.net/publication/379839626_MNIST_Handwritten_Digit_Recognition_Using_a_Deep_Learning-based_Modified_Dual_Input_Convolutional_Neural_Network_DICNN_Model

F. Chen et al., “Assessing Four Neural Networks on Handwritten Digit Recognition Dataset (MNIST),” J. Comput. Sci. Res., vol. 6, no. 3, Art. no. 3, Jul. 2024, doi: 10.30564/jcsr.v6i3.6804.

F. Kizilirmak and B. Yanikoglu, “CNN-BiLSTM model for English Handwriting Recognition: Comprehensive Evaluation on the IAM Dataset,” Jul. 02, 2023, arXiv: arXiv:2307.00664. doi: 10.48550/arXiv.2307.00664.

S. Yang, “Analysis of two handwritten digit recognition methods based on neural network,” in Fourth International Conference on Computer Vision and Pattern Analysis (ICCPA 2024), SPIE, Sep. 2024, pp. 247–252. doi: 10.1117/12.3037994.

A. F. de Sousa Neto, B. L. D. Bezerra, G. C. D. de Moura, and A. H. Toselli, “Data Augmentation for Offline Handwritten Text Recognition: A Systematic Literature Review,” SN Comput. Sci., vol. 5, no. 2, p. 258, Feb. 2024, doi: 10.1007/s42979-023-02583-6.

N. Wang, X. Niu, Y. Yuan, Y. Sun, R. Li, G. You, et al., “A Coordinate Attention Enhanced Swin Transformer for Handwriting Recognition of Parkinson's Disease,” IET Image Processing, vol. 17, no. 9, pp. 2686–2697, 2023, doi: 10.1049/ipr2.12820.

S. Gonwirat and O. Surinta, “CycleAugment: Efficient data augmentation strategy for handwritten text recognition in historical document images,” Eng. Appl. Sci. Res., vol. 49, no. 4, Art. no. 4, Mar. 2022.

H. Wei, K. Liu, J. Zhang, and D. Fan, “Data Augmentation Based on CycleGAN for Improving Woodblock-Printing Mongolian Words Recognition,” in Document Analysis and Recognition – ICDAR 2021, J. Lladós, D. Lopresti, and S. Uchida, Eds., Cham: Springer International Publishing, 2021, pp. 526–537. doi: 10.1007/978-3-030-86337-1_35.

S. M. Rayavarapu, T. S. Prashanthi, G. S. Kumar, G. S. Rao, and N. K. Yegireddy, “Generative Adversarial Networks as a Data Augmentation Tool for Handwritten Digits,” Int. J. Recent Innov. Trends Comput. Commun., vol. 11, no. 5, Art. no. 5, May 2023, doi: 10.17762/ijritcc.v11i5.6606.

Y. Wen, W. Ke, and H. Sheng, “Improved Localization and Recognition of Handwritten Digits on MNIST Dataset with ConvGRU,” Appl. Sci., vol. 15, no. 1, Art. no. 1, Jan. 2025, doi: 10.3390/app15010238.

Y. Jiang, Z. Zhang, and Y. Ge, “CycleGAN-based intrusion detection data augmentation model,” in Third International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2024), SPIE, Jul. 2024, pp. 1251–1258. doi: 10.1117/12.3031413.

“CycleGAN-Based Data Augmentation for Subgrade Disease Detection in GPR Images with YOLOv5.” Accessed: Jun. 19, 2025. [Online]. Available: https://www.mdpi.com/2079-9292/13/5/830?utm_source=chatgpt.com

A. Khan, C. Lee, P. Y. Huang, and B. K. Clark, “Leveraging Generative Adversarial Networks to Create Realistic Scanning Transmission Electron Microscopy Images,” NPJ Comput. Mater., vol. 9, no. 1, Art. no. 85, May 2023, doi: 10.1038/s41524-023-01042-3.

A. Poerna Wardhanie, A. Z. Naufal, and S. H. Eko Wulandari, “Perancangan Strategi Digital Marketings Dengan Metode Race Pada Layanan Online Food Delivery Berdasarkan Perilaku Pelanggan Generasi Z,” J. Technol. Inform. JoTI, vol. 3, no. 1, pp. 1–11, Oct. 2021, doi: 10.37802/joti.v3i1.187.

Simran, R. Sharma, and M. Nagpal, “Handwritten Language Detection for Low-Resource Languages Using a CNN-BiLSTM Hybrid Model,” in 2024 5th IEEE Global Conference for Advancement in Technology (GCAT), Oct. 2024, pp. 1–5. doi: 10.1109/GCAT62922.2024.10923881.

C. Li, S. Li, Y. Gao, X. Zhang, and W. Li, “A Two-stream Neural Network for Pose-based Hand Gesture Recognition,” arXiv.org. Accessed: Jun. 20, 2025. [Online]. Available: https://arxiv.org/abs/2101.08926v1

H. Kaur and D. N. K. Sandhu, “Evaluating the Effectiveness of the Proposed System Using F1 Score, Recall, Accuracy, Precision and Loss Metrics Compared to Prior Techniques,” Int. J. Commun. Netw. Inf. Secur. IJCNIS, vol. 15, no. 4, pp. 368–383, 2023.

M. Ebrahim, A. A. H. Sedky, and S. Mesbah, “Accuracy Assessment of Machine Learning Algorithms Used to Predict Breast Cancer,” Data, vol. 8, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/data8020035.

A. A. Qureshi, M. Ahmad, S. Ullah, M. N. Yasir, F. Rustam, and I. Ashraf, “Performance evaluation of machine learning models on large dataset of android applications reviews,” Multimed. Tools Appl., pp. 1–23, Mar. 2023, doi: 10.1007/s11042-023-14713-6.

A. R. Hakim and N. K. T. Yulia, “‘States of Matter’ electronic worksheet assisted by Powtoon based on Sigil,” J. Phys. Conf. Ser., vol. 1869, no. 1, p. 012081, Apr. 2021, doi: 10.1088/1742-6596/1869/1/012081.

Y. Zhao, Z. Zhang, W. Bao, X. Xu, and Z. Gao, “Hyperspectral image classification based on channel perception mechanism and hybrid deformable convolution network,” Earth Sci. Inform., vol. 17, no. 3, pp. 1889–1906, Jun. 2024, doi: 10.1007/s12145-023-01216-z.

Downloads

Published

2025-11-27

How to Cite

[1]
Muhtyas Yugi, F. S. . Utomo, and A. S. . Barkah, “IMPROVING HANDWRITTEN DIGIT RECOGNITION USING CYCLEGAN-AUGMENTED DATA WITH CNN–BILSTM HYBRID MODEL”, jitk, vol. 11, no. 2, pp. 334–341, Nov. 2025.