FINE-GRAINED SENTIMENT ANALYSIS ON BIG DATA FROM MULTI-PLATFORM IN INDONESIA
DOI:
https://doi.org/10.33480/jitk.v11i1.6549Keywords:
big data, chatgpt, fine-grained sentiment, indobert, sentiment analysisAbstract
Sentiment analysis on multi-platform big data in Indonesia presents a complex challenge, particularly in optimizing sentiment classification with higher granularity levels. This study aims to develop and optimize a sentiment classification model for analyzing public opinion on ChatGPT using a Fine-Grained Sentiment Analysis approach based on Indonesian Bidirectional Encoder Representations from Transformers (IndoBERT). The method is applied to big data collected from various social media platforms to improve accuracy and precision in identifying a broader spectrum of sentiments, including highly positive, positive, neutral, negative, and highly negative categories. A comparative analysis was conducted on different base models, including BERT, RoBERTa, and IndoBERT, to determine the most effective model. Experimental results show that the optimized IndoBERT model achieves an accuracy of 96% and outperforms other models in terms of precision and F1-score across all sentiment categories. Additionally, this study evaluates the model's computational efficiency and adaptability to diverse data. Thus, the developed model can serve as a more effective solution for gaining deeper insights into public opinion across various digital platforms in Indonesia.
Downloads
References
F. M. Sinaga, R. Purba, S. J. Pipin, W. S. Lestari, and S. Winardi, “Optimization of Sentiment Analysis Classification of ChatGPT on Big Data Twitter in Indonesia using BERT,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 3, p. 1665, Jul. 2024, doi: 10.30865/mib.v8i3.7861.
A. S. George and T. Baskar, “Leveraging Big Data and Sentiment Analysis for Actionable Insights: A Review of Data Mining Approaches for Social Media,” 2024, doi: 10.5281/zenodo.13623777.
R. Nakka, T. S. Lakshmi, D. Priyanka, N. R. Sai, S. P. Praveen, and U. Sirisha, “LAMBDA: Lexicon and Aspect-Based Multimodal Data Analysis of Tweet,” Ingénierie des systèmes d information, vol. 29, no. 3, pp. 1097–1106, Jun. 2024, doi: 10.18280/isi.290327.
S. Efendi and P. Sihombing, “Sentiment Analysis of Food Order Tweets to Find Out Demographic Customer Profile Using SVM,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 3, pp. 583–594, Jul. 2022, doi: 10.30812/matrik.v21i3.1898.
F. M. Sinaga, S. J. Pipin, S. Winardi, K. M. Tarigan, and A. P. Brahmana, “Analyzing Sentiment with Self-Organizing Map and Long Short-Term Memory Algorithms,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 23, no. 1, pp. 131–142, Nov. 2023, doi: 10.30812/matrik.v23i1.3332.
S. J. Pipin, F. M. Sinaga, S. Winardi, and M. N. Hakim, “Sentiment Analysis Classification of ChatGPT on Twitter Big Data in Indonesia Using Fast R-CNN,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 4, p. 2137, Oct. 2023, doi: 10.30865/mib.v7i4.6816.
M. D. Deepa and A. Tamilarasi, “Bidirectional Encoder Representations from Transformers (BERT) Language Model for Sentiment Analysis task: Review,” 2021.
M. Pota, M. Ventura, R. Catelli, and M. Esposito, “An effective bert-based pipeline for twitter sentiment analysis: A case study in Italian,” Sensors (Switzerland), vol. 21, no. 1, pp. 1–21, Jan. 2021, doi: 10.3390/s21010133.
A. Zhao and Y. Yu, “Knowledge-enabled BERT for aspect-based sentiment analysis,” Knowl Based Syst, vol. 227, Sep. 2021, doi: 10.1016/j.knosys.2021.107220.
Ms. M. P. Geetha and D. K. Renuka, “Improving the performance of aspect based sentiment analysis using fine-tuned Bert Base Uncased model,” Int. J. Intell. Networks, vol. 2, pp. 64–69, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:238890573
F. Baharuddin and M. F. Naufal, “Fine-Tuning IndoBERT for Indonesian Exam Question Classification Based on Bloom’s Taxonomy,” Journal of Information Systems Engineering and Business Intelligence, vol. 9, no. 2, pp. 253–263, Nov. 2023, doi: 10.20473/jisebi.9.2.253-263.
E. Yulianti and N. K. Nissa, “ABSA of Indonesian customer reviews using IndoBERT: single- sentence and sentence-pair classification approaches,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 5, pp. 3579–3589, Oct. 2024, doi: 10.11591/eei.v13i5.8032.
H. Imaduddin, F. Y. A’la, and Y. S. Nugroho, “Sentiment Analysis in Indonesian Healthcare Applications using IndoBERT Approach,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 8, 2023, doi: 10.14569/IJACSA.2023.0140813.
Taufiq Dwi Purnomo and Joko Sutopo, “COMPARISON OF PRE-TRAINED BERT-BASED TRANSFORMER MODELS FOR REGIONAL LANGUAGE TEXT SENTIMENT ANALYSIS IN INDONESIA,” International Journal Science and Technology, vol. 3, no. 3, pp. 11–21, Nov. 2024, doi: 10.56127/ijst.v3i3.1739.
H. Ahmadian, T. F. Abidin, H. Riza, and K. Muchtar, “Hybrid Models for Emotion Classification and Sentiment Analysis in Indonesian Language,” Applied Computational Intelligence and Soft Computing, vol. 2024, no. 1, Jan. 2024, doi: 10.1155/2024/2826773.
L. Zhu, Y. Xu, Z. Zhu, Y. Bao, and X. Kong, “Fine-Grained Sentiment-Controlled Text Generation Approach Based on Pre-Trained Language Model,” Applied Sciences, vol. 13, no. 1, p. 264, Dec. 2022, doi: 10.3390/app13010264.
W. Sofiya and E. B. Setiawan, “FINE-GRAINED SENTIMENT ANALYSIS IN SOCIAL MEDIA USING GATED RECURRENT UNIT WITH SUPPORT VECTOR MACHINE,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 3, pp. 511–519, Jun. 2023, doi: 10.52436/1.jutif.2023.4.3.855.
J. Wang, Y. Wang, Z. Zhang, J. Zeng, K. Wang, and Z. Chen, “SentiXRL: An advanced large language Model Framework for Multilingual Fine-Grained Emotion Classification in Complex Text Environment,” 2024. [Online]. Available: https://arxiv.org/abs/2411.18162
P. M. Gavali and S. K. Shiragave, “Text Representation for Sentiment Analysis: From Static to Dynamic,” in 2023 3rd International Conference on Smart Data Intelligence (ICSMDI), IEEE, Mar. 2023, pp. 99–105. doi: 10.1109/ICSMDI57622.2023.00025.
N. Alamsyah and N. Rijati, “Fine-Grained Sentiment Classification of Public Opinion on Electric Cars in Indonesia Using IndoBERT.” 2024 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 502-508, 2024, doi: 10.1109/iSemantic63362.2024.10762277
P. Tisna Putra, A. Anggrawan, and H. Hairani, “Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 22, no. 3, pp. 431–442, Jun. 2023, doi: 10.30812/matrik.v22i3.2860.
F. Sinaga, S. Winardi, and Gunawan, “3SV-KNNC Optimization using SVR and LMKNN for Stock Price Prediction,” Jan. 2022, pp. 1–6. doi: 10.1109/ICOSNIKOM56551.2022.10034892.
M. Raees and S. Fazilat, “Lexicon-Based Sentiment Analysis on Text Polarities with Evaluation of Classification Models,” Sep. 2024.
A. Sathya and Dr. M.S Mythili, “Evaluating Sentiment Classification to Specify Polarity by Lexicon-Based and Machine Learning Approaches for COVID-19 Twitter Data Sets,” JOURNAL OF ADVANCED APPLIED SCIENTIFIC RESEARCH, vol. 5, no. 4, pp. 12–27, Jul. 2023, doi: 10.46947/joaasr542023678.
S. Consoli, L. Barbaglia, and S. Manzan, “Fine-grained, aspect-based sentiment analysis on economic and financial lexicon,” Knowl Based Syst, vol. 247, p. 108781, Jul. 2022, doi: 10.1016/j.knosys.2022.108781.
B. Y. Ziwei and H. N. Chua, “A Depression Diagnostic System using Lexicon-based Text Sentiment Analysis,” 2022. [Online]. Available: https://www.who.int/teams/mental-health-and-substance-use/suicide-data
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ronsen Purba, Frans Mikael Sinaga, Sio Jurnalis Pipin, Kelvin Kelvin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.