GFPGAN UPSCALING FOR HUMAN FACIAL EXPRESSION CLASSIFICATION USING VGG19 ARCHITECTURE

Authors

  • Andhika Rezky Fadillah Universitas Muhammadiyah Malang
  • Christian Sri Kusuma Aditya Universitas Muhammadiyah Malang

DOI:

https://doi.org/10.33480/jitk.v11i1.6558

Keywords:

Convolutional Neural Network , Facial Expression Classification , Facial Expression Recognition , GFPGAN , VGG19

Abstract

Human facial expression recognition is a rapidly evolving field in artificial intelligence and digital image processing. This study aims to develop a model capable of recognizing and classifying human emotions through facial feature analysis. However, a major challenge in facial expression classification is low image quality, which can reduce model accuracy. Factors such as poor lighting, low resolution, variations in viewing angles, and occlusion (obstructions) on the face pose significant obstacles to accurate detection.This research proposes the application of an upscaling method using the Generative Facial Prior Generative Adversarial Network (GFPGAN) to enhance facial image quality by restoring details in expressions that may be unclear due to low resolution. After the upscaling process, facial expression classification is conducted using a CNN architecture based on VGG19, and the model is evaluated using accuracy, precision, recall, and F1-score metrics to assess its performance in emotion detection. Experiments are conducted in two scenarios: classification without upscaling and classification with GFPGAN upscaling. The results indicate that integrating GFPGAN with the VGG19-based CNN proposed in this study significantly improves emotion detection accuracy, achieving 86%, compared to 76% for the model without image quality enhancement

Downloads

Download data is not yet available.

References

Ar, A. W., Rachman, F. I., Bakti, R. Y., & Wahyuni, T. (2024). Sistem Deteksi Ekspresi Wajah Berbasis Convolutional Neural Network (CNN) Untuk Pengenalan Emosi Manusia. Jurnal INSYPRO (Information System and Processing), vol 9, no. 2, 2024.

Sutarti and F. Syaqialloh, “Klasifikasi dan Pengenalan Emosi dari Ekspresi Wajah Menggunakan CNN-BiLSTM dengan Teknik Data Augmentation,” Decod. J. Pendidik. Teknol. Inf., vol. 5, no. 1, pp. 79–91, 2025.

W. Kustiawan et al., “Pengantar Komunikasi Non Verbal,” J. Anal. Islam., vol. 11, no. 1, p. 143, 2022, doi: 10.30829/jai.v11i1.11928.

I. Dominguez-Catena, D. Paternain, and M. Galar, “Gender Stereotyping Impact in Facial Expression Recognition,” Commun. Comput. Inf. Sci., vol. 1752 CCIS, no. Ml, pp. 9–22, 2023, doi: 10.1007/978-3-031-23618-1_1.

E. Owusu, J. A. Kumi, and J. K. Appati, “On Facial Expression Recognition Benchmarks,” Appl. Comput. Intell. Soft Comput., vol. 2021, 2021, doi: 10.1155/2021/9917246.

X. Xu, K. Zhou, Y. Zhang, Y. Wang, F. Wang, and X. Zhang, “Faces of the Mind: Unveiling Mental Health States Through Facial Expressions in 11,427 Adolescents,” pp. 1–16, 2024, [Online]. Available: http://arxiv.org/abs/2405.20072.

N. Ahmad and A. Hadinegoro, “Teknik Pengenalan Wajah Menggunakan Model Ekstraksi Fitur Citra Digital,” J. Pract. Comput. Sci., vol. 2, no. 2, pp. 64–73, 2022, doi: 10.37366/jpcs.v2i2.1465.

B. Nurhakim, A. Rifai, D. A. Kurnia, D. Sudrajat, and U. Supriatna, “Smart Attendance Tracking System Employing Deep Learning for Face Anti-Spoofing Protection,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 3, pp. 496–505, 2025, doi: 10.33480/jitk.v10i3.5992.

C. S. K. Aditya, V. R. S. Nastiti, Q. R. Damayanti, and G. B. Sadewa, “Implementation of Convolutional Neural Network Method in Identifying Fashion Image,” JUITA J. Inform., vol. 11, no. 2, p. 195, 2023, doi: 10.30595/juita.v11i2.17372.

A. R. Hakim and D. M. U. Atmaja, “Implementation of Cnn for Classifying Patchouli Leaf Images Based on Accuracy and Evaluation,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 4, pp. 728–734, 2025, doi: 10.33480/jitk.v10i4.6207.

W. Liang, “Research on Facial Expression Recognition Based on Improved VGG19,” Trans. Comput. Sci. Intell. Syst. Res., vol. 5, pp. 1078–1085, 2024, doi: 10.62051/tezx1j29.

Kamal and H. Ez-zahraouy, “A comparison between the VGG16 , VGG19 and ResNet50 architecture frameworks for classi cation of normal and CLAHE processed medical images,” Res. Sq., pp. 0–16, 2023.

S. S. Marar, M. D. P, and R. Shriram, “Face Restoration Using Generative Facial Prior ( GFP ),” vol. 10, no. 5, pp. 465–471, 2022.

A. Kumari, “A Cascaded Method for Real Face Image Restoration using GFP-,” vol. 3404, no. 3, 2022.

X. Wang, Y. Li, H. Zhang, and Y. Shan, “Towards Real-World Blind Face Restoration with Generative Facial Prior,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 9164–9174, 2021, doi: 10.1109/CVPR46437.2021.00905.

M. MAHMOUDIMA, “MMA Facial Expression,” Kaggle, 2020. https://www.kaggle.com/datasets/mahmoudima/mma-facial-expression.

A. Agung, A. Daniswara, I. Kadek, and D. Nuryana, “Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru,” J. Informatics Comput. Sci., vol. 05, pp. 97–100, 2023.

F. Alghifari and D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes,” J. Ilm. Inform., vol. 9, no. 02, pp. 75–81, 2021, doi: 10.33884/jif.v9i02.3755.

T. Gori, A. Sunyoto, and H. Al Fatta, “Preprocessing Data dan Klasifikasi untuk Prediksi Kinerja Akademik Siswa,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 1, pp. 215–224, 2024, doi: 10.25126/jtiik.20241118074.

Dian Anisa Agustina, “Klasifikasi Citra Jenis Kulit Wajah Dengan Algoritma Convolutional Neural Network (Cnn) Resnet-50,” J. Ris. Sist. Inf., vol. 1, no. 3, pp. 01–07, 2024, doi: 10.69714/13sbby24.

A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive survey of modern approaches,” Array, vol. 16, no. November, p. 100258, 2022, doi: 10.1016/j.array.2022.100258.

S. A. ERNI ALBAKIA and Rizal Adi Saputra, “Identifikasi Jenis Daun Tanaman Obat Menggunakan Metode Convolutional Neural Network (CNN) Dengan Model VGG16,” J. Inform. Polinema, vol. 9, no. 4, pp. 451–460, 2023, doi: 10.33795/jip.v9i4.1420.

K. Munir, F. Frezza, and A. Rizzi, “Deep learning for brain tumor segmentation,” Stud. Comput. Intell., vol. 908, pp. 189–201, 2021, doi: 10.1007/978-981-15-6321-8_11.

I. B. K. Sudiatmika and I. G. A. A. S. Dewi, “Pengenalan Karakter Wayang Bali Dengan Arsitektur Vgg-16,” J. Teknol. Inf. dan Komput., vol. 7, no. 1, pp. 47–53, 2021, doi: 10.36002/jutik.v7i1.1297.

A. W. Salehi et al., “A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope,” Sustain., vol. 15, no. 7, 2023, doi: 10.3390/su15075930.

D. Marcella, Yohannes, and S. Davella, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Dengan Arsitektur VGG-19,” vol. 3, no. 1, pp. 60–70, 2022.

D. Hindarto, N. Afarini, and E. T. Esthi H, “Comparison Efficacy of VGG16 and VGG19 Insect Classification Models,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 3, pp. 189–195, 2023, doi: 10.33387/jiko.v6i3.7008.

Y. F. Riti, R. P. Kristianto, and D. R. A. Setiawan, “Perform Comparation of Deep Learning Methods in Gender Classification From Facial Images,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 4, pp. 926–936, 2025, doi: 10.33480/jitk.v10i4.4717.

R. Shinta, Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, “Klasifikasi Citra Penyakit Daun Tanaman Padi Menggunakan CNN dengan Arsitektur VGG-19,” J. Sains dan Inform., vol. 9, no. 1, pp. 37–45, 2023, doi: 10.22216/jsi.v9i1.2175.

Ž. Vujović, “Classification Model Evaluation Metrics,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 6, pp. 599–606, 2021, doi: 10.14569/IJACSA.2021.0120670.

T. Tinaliah and T. Elizabeth, “Penerapan Convolutional Neural Network Untuk Klasifikasi Citra Ekspresi Wajah Manusia Pada MMA Facial Expression Dataset,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 4, pp. 2051–2059, 2021, doi: 10.35957/jatisi.v8i4.1437.

Downloads

Published

2025-08-15

How to Cite

[1]
A. R. Fadillah and C. Sri Kusuma Aditya, “GFPGAN UPSCALING FOR HUMAN FACIAL EXPRESSION CLASSIFICATION USING VGG19 ARCHITECTURE”, jitk, vol. 11, no. 1, pp. 18–26, Aug. 2025.