PRESERVATION OF THROUGH PATTERN RECOGNITION USING A COMBINATION OF GLCM, LBP, AND SVM MULTICLASS

Penulis

  • Budiman Baso Universitas Timor
  • Risald Risald Universitas Timor

DOI:

https://doi.org/10.33480/jitk.v11i1.6171

Kata Kunci:

classification , GLCM , LBP, SVM, timor weaving

Abstrak

This study proposes an automatic method to recognize traditional Timorese weaving patterns using machine learning techniques. Timorese weaving image data is processed through pre-processing stages and its features are extracted using the Gray Level Cooccurrence Matrix (GLCM) and Local Binary Pattern (LBP) methods, which function to capture the characteristics of texture and design in the weaving patterns. The classification model is built with the Support Vector Machine (SVM) algorithm using the One Versus One (OVO) and One Versus All (OVA) approaches with several kernels, including Linear, Polynomial, and Radial Basis Function (RBF). The best results were obtained with the Linear kernel and the OVO method, resulting in an accuracy of 88.66%, a precision of 88.66%, a recall of 88.80%, and an F1-score of 88.73%. This approach shows great potential in preserving and documenting Timorese weaving patterns automatically and efficiently, with accurate classification results. This study explores a machine learning approach for identifying Timorese weaving patterns. By leveraging GLCM and LBP for texture analysis and SVM with OVO and OVA for classification, the method achieves high accuracy. The findings support digital preservation efforts and cultural heritage conservation.

Unduhan

Data unduhan belum tersedia.

Referensi

B. Baso and R. M. Akhyar, “Implementation of Deep Learning Based Convolutional Neural Network for Classification of Timor Weaving Motifs,” J. Inf. Technol. Unimor, pp. 22–25, 2024, doi: 10.32938/jitu.v4i1.7971.

J. E. Sua, O. Sabu, and D. Rohi, “Strategi Pengembangan Tenun Ikat Sebagai Kearifan Lokal Masyarakat Suku Dawan Desa Oebesi Kecamatan Amarasi Timur Kabupaten Kupang,” vol. 7, no. 1, pp. 216–225, 2025.

Risald, D. Nababan, M. Aritonang, B. Baso, M. J. Purba, and N. Huda, “Classification of NTT Woven Motif Images Based on Convolutional Neural Networks,” 2024 9th Int. Conf. Informatics Comput. ICIC 2024, pp. 1–4, 2024, doi: 10.1109/ICIC64337.2024.10957356.

Y. P. K. Kelen and B. Baso, “Klasifikasi Tenun Timor Menggunakan Metode SVM Berdasarkan Speeded Up Robust Features,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 6, pp. 1353–1360, 2023, doi: 10.25126/jtiik.1067625.

M. T. Kanugroho, M. A. Rahman, and R. C. Wihandika, “Klasifikasi Batik dengan Ekstraksi Fitur Tekstur Local Binary Pattern dan Metode K-Nearest Neighbor,” vol. 6, no. 10, pp. 4788–4794, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

P. Anisa and A. Rahmatulloh, “Classication of Batik Tasikmalaya Using Neural Network With GLCM dan LBP Feature Extraction,” Jamastika, vol. 3, no. April, pp. 28–33, 2024.

U. Bhoga and V. V. Kumar, “An Integrated Approach To Texture Classification Using Rule-Based Motifs and Magnitude Textons,” J. Theor. Appl. Inf. Technol., vol. 103, no. 11, pp. 4789–4801, 2025.

H. Herlina Ullu, B. Baso, P. G. Manek, and D. Chrisinta, “Ekstraksi Fitur Berbasis Tekstur Pada Citra Tenun Timor Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM),” 2022. [Online]. Available: https://doi.org/10.32938/jitu.v2i2.3245

L. Hakim, S. P. Kristanto, D. Yusuf, and F. N. Afia, “Pengenalan Motif Batik Banyuwangi Berdasarkan Fitur Grey Level Co-Occurrence Matrix,” J. Teknoinfo, vol. 16, no. 1, p. 1, 2022, doi: 10.33365/jti.v16i1.1320.

M. T. Kanugroho, M. A. Rahman, and R. C. Wihandika, “Klasifikasi Batik dengan Ekstraksi Fitur Tekstur Local Binary Pattern dan Metode K-Nearest Neighbor,” vol. 6, no. 10, pp. 4788–4794, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

A. I. Nurulrachman, R. C. Wihandika, “Ekstraksi Ciri pada Klasifikasi Citra Batik menggunakan Metode Gray Level Co-Occurrence Matrix, Local Binary Pattern, dan HSV Color Moment,” … Teknol. Inf. dan …, vol. 7, no. 1, pp. 374–383, 2023.

P. N. Andono and E. H. Rachmawanto, “Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 1–9, 2021, doi: 10.29207/resti.v5i1.2615.

N. S. Fatimah and S. Agustin, “Klasifikasi Citra Batik Menggunakan Local Binary Pattern (LBP) dan Support Vector Machine (SVM),” J. Algoritm., vol. 22, no. 1, pp. 185–196, 2025, doi: 10.33364/algoritma/v.22-1.2208.

N. Neneng, A. S. Puspaningrum, and A. A. Aldino, “Perbandingan Hasil Klasifikasi Jenis Daging Menggunakan Ekstraksi Ciri Tekstur Gray Level Co-occurrence Matrices (GLCM) Dan Local Binary Pattern (LBP),” Smatika J., vol. 11, no. 01, pp. 48–52, 2021, doi: 10.32664/smatika.v11i01.572.

J. Arifin, “Klasifikasi Citra Tekstur Kayu Menggunakan Gray Level Co-Occurance Matrix Dan Local Binary Pattern,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 1, p. 34, 2022, doi: 10.26798/jiko.v6i1.557.

Ananta Dwi Prayoga Alwy, M Syahid Nur Wahid, Bukhari Naufal Nur Ag, and M Miftach Fakhri, “Klasifikasi Penyakit Pada Padi Dengan Ekstraksi Fitur LBP dan GLCM,” J. Deep Learn. Comput. Vis. Digit. Image Process., pp. 1–10, 2023, doi: 10.61255/decoding.v1i1.51.

R. Oktafiani, A. Hermawan, and D. Avianto, “Pengaruh Komposisi Split data Terhadap Performa Klasifikasi Penyakit Kanker Payudara Menggunakan Algoritma Machine Learning,” J. Sains dan Inform., vol. 9, no. April, pp. 19–28, 2023, doi: 10.34128/jsi.v9i1.622.

R. Krebs, S. S. Bagui, D. Mink, and S. C. Bagui, “Applying Multi-CLASS Support Vector Machines: One-vs.-One vs. One-vs.-All on the UWF-ZeekDataFall22 Dataset,” Electron., vol. 13, no. 19, pp. 1–15, 2024, doi: 10.3390/electronics13193916.

Q. Meidianingsih, “Analisis Perbandingan Performa Metode Ensemble Dalam Menangani Imbalanced Multi-Class,” J. Apl. Stat. Komputasi Stat., pp. 13–21, 2022.

M. K. Delimayanti, R. Sari, M. Laya, M. R. Faisal, and P. Pahrul, “Pemanfaatan Metode Multiclass-SVM pada Model Klasifikasi Pesan Bencana Banjir di Twitter,” Edu Komputika J., vol. 8, no. 1, pp. 39–47, 2021, doi: 10.15294/edukomputika.v8i1.47858.

R. S. Wijaya, A. Qur’ania, and I. Anggraeni, “Klasifikasi Penyakit Cacar Monyet Menggunakan Support Vector Machine (SVM),” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, pp. 1253–1260, 2024, doi: 10.57152/malcom.v4i4.1417.

J. Anggraini and D. Alita, “Implementasi Metode SVM Pada Sentimen Analisis Terhadap Pemilihan Presiden (Pilpres) 2024 Di Twitter,” J. Inform. J. Pengemb. IT, vol. 9, no. 2, pp. 102–111, 2024, doi: 10.30591/jpit.v9i2.6560.

F. Listanto, M. Fatchan, and W. Hadikristanto, “Prediction of Casting Product Defects Using SVM Algorithm Based on RBF and Linear,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 5, no. 2, pp. 109–119, 2023.

A. Frenica, L. Lindawati, L. Lindawati, S. Soim, and S. Soim, “Implementasi Algoritma Support Vector Machine (SVM) untuk Deteksi Banjir,” INOVTEK Polbeng - Seri Inform., vol. 8, no. 2, p. 291, 2023, doi: 10.35314/isi.v8i2.3443.

A. A. Rashifa, H. Marcos, P. Subarkah, and S. A. Sholikhatin, “Comparison of Svm and Naïve Bayes Classifier Algorithms on Student Interest in Joining Msib,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 1, pp. 116–123, 2024, doi: 10.33480/jitk.v10i1.5270.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.

##submission.downloads##

Diterbitkan

2025-08-15

Cara Mengutip

[1]
B. Baso dan R. Risald, “PRESERVATION OF THROUGH PATTERN RECOGNITION USING A COMBINATION OF GLCM, LBP, AND SVM MULTICLASS”, jitk, vol. 11, no. 1, hlm. 36–43, Agu 2025.