PARKINSONS DISEASE DETECTION USING INCEPTION AND X-CEPTION WITH ATTENTION MECHANISM

Penulis

  • Eka Rahma Agustina Unversitas Amikom Purwokerto
  • Hendra Marcos Universitas Amikom Purwokerto

DOI:

https://doi.org/10.33480/jitk.v11i1.6277

Kata Kunci:

attention mechanism, deep learning , inceptionv3 and Xception , parkinson’s disease detection , transfer learning

Abstrak

Parkinson's disease is one of the global health challenges that requires early detection to slow the progression of symptoms. This study proposes an automatic detection system based on deep learning using the InceptionV3 and Xception architectures combined with a multi-head awareness mechanism. The dataset used consists of 72 handwritten spiral images, comprehensively distributed between the Healthy and Parkinson's categories. The process includes preprocessing in the form of normalization and image resizing, as well as model training using the Adam algorithm and the binary cross-entropy loss function. The results show that the model is able to classify both categories with high accuracy. The use of the attention mechanism provides a performance increase of 4.2% on InceptionV3 and 3.1% on Xception compared to the version without attention. In data testing, the InceptionV3 model with attention achieved 100% accuracy, 100% precision, 100% recall, and 100% F1-score. Meanwhile, the Xception model with attention achieved 88% accuracy, 90% precision, 88% recall, and 87% F1-score. The attention mechanism also helps the model in capturing important features such as vibration and irregularity of the spiral pattern. This research makes an important contribution to the development of an artificial intelligence-based automated early diagnosis system to detect Parkinson's disease more accurately and responsively.

Unduhan

Data unduhan belum tersedia.

Referensi

J. Zhang, “Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson’s disease,” npj Park. Dis., vol. 8, no. 1, p. 13, 2022, 10.1038/s41531-021-00266-8.

J. Mei, C. Desrosiers, and J. Frasnelli, “Machine learning for the diagnosis of Parkinson’s disease: a review of literature,” Front. Aging Neurosci., vol. 13, p. 633752, 2021, doi: 10.3389/fnagi.2021.633752.

H. Marcos, B. Warsito, and A. Wibowo, “Feature Selection and Classification Algorithm Approaches for Parkinson’s Disease Detection,” Proc. - 2021 IEEE 5th Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. Appl. Data Sci. Artif. Intell. Technol. Glob. Challenges Dur. Pandemic Era, ICITISEE 2021, pp. 95–99, 2021, doi: 10.1109/ICITISEE53823.2021.9655774.

R. A. Fadillah and I. A. Nachrowi, “Implementasi Sistem Pakar Untuk Mendiagnosa Penyakit Paru-Paru Menggunakan Metode Forward Chaining,” J. Inform. Multi, vol. 1, no. 4, pp. 524–528, 2023.

C. Quan, K. Ren, and Z. Luo, “A Deep Learning Based Method for Parkinson’s Disease Detection Using Dynamic Features of Speech,” IEEE Access, vol. 9, pp. 10239–10252, 2021, doi: 10.1109/ACCESS.2021.3051432.

S. N. Nugraha, R. Pebrianto, and E. Fitri, “Penerapan Deep Learning Pada Klasifikasi Tanaman Paprika Berdasarkan Citra Daun Menggunakan Metode CNN,” Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 8, no. 2, pp. 133–142, 2023, doi: 10.51211/isbi.v8i2.2671.

R. Kurniawan, P. B. Wintoro, Y. Mulyani, and M. Komarudin, “Implementasi Arsitektur Xception Pada Model Machine Learning Klasifikasi Sampah Anorganik,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 2, pp. 233–236, 2023, doi: 10.23960/jitet.v11i2.3034.

C. Wibisono and S. Budi, “Form Recognition dan Character Mapping Menggunakan Image Segmentation dan Optical Character Recognition,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 154–164, 2021, doi: 10.28932/jutisi.v7i1.3340.

R. Rina, T. Hidayat, and D. Uki Eka Saputri, “Analisis Percepatan Pemulihan Ekonomi Indonesia Pasca Pandemi Dengan Big Data Dan Deep Learning,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3244–3252, 2024, doi: 10.36040/jati.v8i3.9420.

A. Taufiqur and D. H. Fudholi, “Image Captioning For Mobile Application,” Automata, vol. 3, no. 2, 2022.

R. A. Kurniawan, A. Sunyoto, and A. Nasiri, “Pengaruh Arsitektur Convolutional Neural Network Untuk Klasifikasi Penyakit Daun Tomat,” Tek. Teknol. Inf. dan Multimed., vol. 4, no. 2, pp. 126–131, 2023, doi: 10.46764/teknimedia.v4i2.111.

F. Ridho and M. Syahputra, “Perancangan Sistem Informasi atau Aplikasi Monitoring Absensi Karyawan pada PT. Socfindo Menggunakan QR Code Berbasis Web,” SIKOM J. Sist. Inf. Komput., vol. 1, no. 1, pp. 37–50, 2024.

M. Boulaabi, T. B. A. Gader, A. K. Echi, and S. Mbarek, “Advanced Segmentation of Diabetic Retinopathy Lesions Using DeepLabv3+,” in 2024 IEEE/ACS 21st International Conference on Computer Systems and Applications (AICCSA), IEEE, pp. 1–8, 2024, doi: 10.1109/AICCSA63423.2024.10912539,

T. S. Winanto, C. Rozikin, and A. Jamaludin, “Analisa Performa Arsitektur Transfer Learning Untuk Mengindentifikasi Penyakit Daun Pada Tanaman Pangan,” J. Appl. Informatics Comput., vol. 7, no. 1, pp. 68–81, 2023, doi: 10.30871/jaic.v7i1.5991.

E. D. Sefrila, B. Rahmat, and A. N. Sihananto, “Implementasi Arsitektur Inception V3 Dengan Optimasi Adam, SGD dan RMSP Pada Klasifikasi Penyakit Malaria,” Bridg. J. Publ. Sist. Inf. dan Telekomun., vol. 2, no. 2, pp. 69–84, 2024, doi: 10.62951/bridge.v2i2.62.

H. Maddala, “Building an Image Classifier Model Using Pretrained InceptionV3,” juni 3, 2024.

T. A. Tresi and M. Salim, “Analisa Perbandingan Inception dan Xception Berbasis CNN untuk Klasifikasi Wajah Hewan,” J. Tek. Inform. dan Desain Komun. Vis., vol. 3, no. 1, pp. 34–41, 2024.

A. S. Atmaja, N. F. Muzakki, and Z. D. Oktavian, “Peramalan Tinggi Muka Air Menggunakan Long-Short Term Memory dengan Mekanisme Multi-Head Attention,” in Seminar Nasional Official Statistics, 2024, pp. 625–636.

C. E. Sukmawati, A. R. Pratama, and N. Nurjanah, “Algoritma Naïve Bayes, Random Forest Dan Support Vector Machine Untuk Klasifikasi Penyakit Sapi,” J. Ilmu Komput. dan Teknol. Inf., vol. 9, no. 1, pp. 44–50, 2024.

X. Wang et al., “A recognition method of ancient architectures based on the improved inception v3 model,” Symmetry (Basel)., vol. 14, no. 12, p. 2679, 2022, doi: 10.3390/sym14122679.

##submission.downloads##

Diterbitkan

2025-08-15

Cara Mengutip

[1]
E. R. Agustina dan H. Marcos, “PARKINSONS DISEASE DETECTION USING INCEPTION AND X-CEPTION WITH ATTENTION MECHANISM”, jitk, vol. 11, no. 1, hlm. 1–7, Agu 2025.

Artikel paling banyak dibaca berdasarkan penulis yang sama