ENHANCING SENTIMENT ANALYSIS ACCURACY WITH BERT AND SILHOUETTE METHOD OPTIMIZATION
DOI:
https://doi.org/10.33480/jitk.v11i1.6392Kata Kunci:
BERT, big data, sentiment analysis, silhouette coefficient, SOMAbstrak
This research is based on the emergence of ChatGPT technology, which has significant implications in various fields. This research aims to design a model that improves sentiment analysis classification accuracy. The methods applied include the use of the Silhouette Coefficient to determine the best cluster parameters before performing data grouping with the Self-Organizing Map (SOM) method. Additionally, the Bidirectional Encoder Representations from Transformers (BERT) model is utilized to perform precise and convergent sentiment classification. The research methodology encompasses several phases, including data preprocessing through natural language processing techniques. Textual data is converted into vector representations, which are then processed using the Silhouette Coefficient to identify the optimal cluster parameters. These parameters are subsequently applied in the Self-Organizing Map method to cluster data, while the Bidirectional Encoder Representations from Transformers model determines public sentiment, categorized as positive, negative, or neutral. The findings of this study indicate that the best cluster parameter is 9, using a batch size of 64 and a maximum sequence length of 128. The highest accuracy achieved using the confusion matrix is 92.06%. Further tests with varying parameters confirm that the Silhouette Coefficient method significantly enhances the convergence and accuracy of classification outcomes. The conclusion of this research is that integrating the Silhouette Coefficient and Bidirectional Encoder Representations from Transformers is effective in optimizing sentiment analysis on large datasets, achieving both accurate and reliable results.
Unduhan
Referensi
L. Marron, “Exploring the potential of ChatGPT 3.5 in higher education: Benefits, limitations, and academic integrity,” in Handbook of Research on Redesigning Teaching, Learning, and Assessment in the Digital Era, IGI Global, 2023, pp. 326–349. doi: 10.4018/978-1-6684-8292-6.ch017.
F. W. Putra, I. B. Rangka, S. Aminah, and M. H. R. Aditama, “ChatGPT in the higher education environment: Perspectives from the theory of high order thinking skills,” Journal of Public Health (United Kingdom), vol. 45, no. 4, pp. e840–e841, Dec. 2023, doi: 10.1093/pubmed/fdad120.
T. Adiguzel, M. H. Kaya, and F. K. Cansu, “Revolutionizing education with AI: Exploring the transformative potential of ChatGPT,” 2023, Bastas. doi: 10.30935/cedtech/13152.
P. Shah, H. Patel, and P. Swaminarayan, “Multitask Sentiment Analysis and Topic Classification Using BERT,” ICST Transactions on Scalable Information Systems, vol. 11, Jul. 2024, doi: 10.4108/eetsis.5287.
L. He, “Enhanced twitter sentiment analysis with dual joint classifier integrating RoBERTa and BERT architectures,” Front Phys, vol. 12, 2024, doi: 10.3389/fphy.2024.1477714.
M. Pota, M. Ventura, R. Catelli, and M. Esposito, “An effective bert-based pipeline for twitter sentiment analysis: A case study in Italian,” Sensors (Switzerland), vol. 21, no. 1, pp. 1–21, Jan. 2021, doi: 10.3390/s21010133.
A. Zhao and Y. Yu, “Knowledge-enabled BERT for aspect-based sentiment analysis,” Knowl Based Syst, vol. 227, Sep. 2021, doi: 10.1016/j.knosys.2021.107220.
Ms. M. P. Geetha and D. K. Renuka, “Improving the performance of aspect based sentiment analysis using fine-tuned Bert Base Uncased model,” Int. J. Intell. Networks, vol. 2, pp. 64–69, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:238890573
F. M. Sinaga, R. Purba, S. J. Pipin, W. S. Lestari, and S. Winardi, “Optimization of Sentiment Analysis Classification of ChatGPT on Big Data Twitter in Indonesia using BERT,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 3, p. 1665, Jul. 2024, doi: 10.30865/mib.v8i3.7861.
A. Subakti, H. Murfi, and N. Hariadi, “The performance of BERT as data representation of text clustering,” J Big Data, vol. 9, no. 1, Dec. 2022, doi: 10.1186/s40537-022-00564-9.
A. Rajan and M. Manur, “Aspect based sentiment analysis using fine-tuned BERT model with deep context features,” IAES International Journal of Artificial Intelligence, vol. 13, no. 2, pp. 1250–1261, Jun. 2024, doi: 10.11591/ijai.v13.i2.pp1250-1261.
J. Ma, “Using the Bert model and the attention mechanism to obtain an accurate sentiment analysis model,” 2024.
P. Akter et al., “Sentiment Analysis of Consumer Feedback and Its Impact on Business Strategies by Machine Learning,” The American Journal of Applied Sciences, vol. 07, no. 01, pp. 6–16, Jan. 2025, doi: 10.37547/tajas/Volume07Issue01-02.
Nikhil Sanjay Suryawanshi, “Sentiment analysis with machine learning and deep learning: A survey of techniques and applications,” International Journal of Science and Research Archive, vol. 12, no. 2, pp. 005–015, Jul. 2024, doi: 10.30574/ijsra.2024.12.2.1205.
S. Efendi and P. Sihombing, “Sentiment Analysis of Food Order Tweets to Find Out Demographic Customer Profile Using SVM,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 3, pp. 583–594, Jul. 2022, doi: 10.30812/matrik.v21i3.1898.
F. M. Sinaga, S. J. Pipin, S. Winardi, K. M. Tarigan, and A. P. Brahmana, “Analyzing Sentiment with Self-Organizing Map and Long Short-Term Memory Algorithms,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 23, no. 1, pp. 131–142, Nov. 2023, doi: 10.30812/matrik.v23i1.3332.
S. J. Pipin, F. M. Sinaga, S. Winardi, and M. N. Hakim, “Sentiment Analysis Classification of ChatGPT on Twitter Big Data in Indonesia Using Fast R-CNN,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 4, p. 2137, Oct. 2023, doi: 10.30865/mib.v7i4.6816.
M. Pota, M. Ventura, H. Fujita, and M. Esposito, “Multilingual evaluation of pre-processing for BERT-based sentiment analysis of tweets,” Expert Syst Appl, vol. 181, Nov. 2021, doi: 10.1016/j.eswa.2021.115119.
J. Lu and H. Gweon, “Random k conditional nearest neighbor for high-dimensional data,” PeerJ Comput Sci, vol. 11, 2025, doi: 10.7717/PEERJ-CS.2497.
O. Ndama, I. Bensassi, and E. M. En-Naimi, “The impact of BERT-infused deep learning models on sentiment analysis accuracy in financial news,” Bulletin of Electrical Engineering and Informatics, vol. 14, no. 2, pp. 1231–1240, Apr. 2025, doi: 10.11591/eei.v14i2.8469.
J. Sun, M. Wang, D. Ren, and D. Chen, “Research and Application of Text-Based Sentiment Analytics,” in Frontiers in Artificial Intelligence and Applications, IOS Press BV, 2024, pp. 619–629. doi: 10.3233/FAIA241391.
Z. Su, “Applications of BERT in sentimental analysis,” Applied and Computational Engineering, vol. 92, no. 1, pp. 147–152, Oct. 2024, doi: 10.54254/2755-2721/92/20241711.
O. Ndama, I. Bensassi, and E. M. En-Naimi, “The impact of BERT-infused deep learning models on sentiment analysis accuracy in financial news,” Bulletin of Electrical Engineering and Informatics, vol. 14, no. 2, pp. 1231–1240, Apr. 2025, doi: 10.11591/eei.v14i2.8469.
P. Tisna Putra, A. Anggrawan, and H. Hairani, “Comparison of Machine Learning Methods for Classifying User Satisfaction Opinions of the PeduliLindungi Application,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 22, no. 3, pp. 431–442, Jun. 2023, doi: 10.30812/matrik.v22i3.2860.
F. Sinaga, S. Winardi, and Gunawan, “3SV-KNNC Optimization using SVR and LMKNN for Stock Price Prediction,” Jan. 2022, pp. 1–6. doi: 10.1109/ICOSNIKOM56551.2022.10034892.
H. Mulyani, R. A. Setiawan, and H. Fathi, “Optimization of K Value in Clustering Using Silhouette Score (Case Study: Mall Customers Data),” Journal of Information Technology and Its Utilization, vol. 6, no. 2, pp. 45–50, Dec. 2023, doi: 10.56873/jitu.6.2.5243.
A. Bello, S. C. Ng, and M. F. Leung, “A BERT Framework to Sentiment Analysis of Tweets,” Sensors, vol. 23, no. 1, Jan. 2023, doi: 10.3390/s23010506.
Q. Hu, “A cross-language short text classification model based on BERT and multilayer collaborative convolutional neural network (MCNN),” MCB Molecular and Cellular Biomechanics, vol. 21, no. 3, 2024, doi: 10.62617/mcb739.
##submission.downloads##
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Kelvin Kelvin, Frans Mikael Sinaga, Wulan Sri Lestari, Sunaryo Winardi, Khairul Hawani Rambe, Ronsen Purba

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.