KLASIFIKASI KONDISI BAN KENDARAAN MENGGUNAKAN ARSITEKTUR VGG16

  • ahmad fudolizaenun nazhirin (1*) STT Wastukancana
  • Muhammad Rafi Muttaqin (2) STT Wastukancana
  • Teguh Iman Hermanto (3) STT Wastukancana

  • (*) Corresponding Author
Keywords: Tyres, Deep Learning, VGG16

Abstract

Tyres are the main component that a vehicle needs to work with reducing vibration due to uneven road surfaces, protecting the wheels from wear to provide stability between the vehicle and the ground helping to improve acceleration to facilitate travel while driving. Wear ensures stability between the vehicle and the ground helps improve acceleration for easy movement and driving. Caused including components that are often used, tires can experience damage such as the appearance of cracks in the tires. Cracks in tires can be triggered by factors such as age or the cause of the road that has been exceeded. Detection of tire cracks at this time is still carried out conventionally, where users see directly the state of the tire whether the tire is in good condition or cracked. Conventional methods are important because they maintain tire quality and rider safety. The Conventional Method certainly has weaknesses because vehicle users must have good vision and the ability to distinguish normal tires or cracked tires, but this method is considered less effective because it still uses human labor, causing the risk of human error (human negligence) which can hinder the process of identifying tire cracks. Based on this problem, this study will develop a deep learning model that can classify cracked tires using the VGG16 architecture. In this study, the model was created using 8 scenarios by changing the value of epochs, to get the best parameters in making the model. The results of the 8 scenarios carried out in this study are the best scenario obtained in scenarios 1,3,4 which get 98% accuracy in model testing

Downloads

Download data is not yet available.

References

Arthono, A., & Permana, V. A. (2022). Perencanaan Perkerasan Lentur Jalan Raya Menggunakan Metode Analisa Komponen SNI 1732-1989-F Ruas Jalan Raya Mulya Sari Kecamatan Pamanukan Sampai Kecamatan Binong Kabupaten Subang Propinsi Jawa Barat. Jurnal Komposit, 6(1), 41. https://doi.org/10.32832/komposit.v6i1.6740

Damuri, A., Riyanto, U., Rusdianto, H., & Aminudin, M. (2021). Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako. JURIKOM (Jurnal Riset Komputer), 8(6), 219. https://doi.org/10.30865/jurikom.v8i6.3655

Haksoro, E. I., & Setiawan, A. (2021). Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network. Jurnal ELTIKOM, 5(2), 81–91. https://doi.org/10.31961/eltikom.v5i2.428

Pramana, A. L., Setyati, E., & Kristian, Y. (2020). Model Cnn Lenet Dalam Pengenalan Jenis Golongan Kendaraan. Institut Sains Dan Teknologi Terpadu Surabaya, 13(2), 65–69.

Prasetyo, E., Purbaningtyas, R., Adityo, R. D., Prabowo, E. T., & Ferdiansyah, A. I. (2021). Perbandingan Convolution Neural Network Untuk Klasifikasi Kesegaran Ikan Bandeng Pada Citra Mata. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(3), 601. https://doi.org/10.25126/jtiik.2021834369

Puspitasari, L. (2020). Analisa Performance Ban Pada Unit Produksi Overburden Hd-785 Terhadap Produktivitas Tambang Batubara. Kurvatek, 5(1), 69–79. https://doi.org/10.33579/krvtk.v5i1.1775

Putra, Kade Bramasta Vikana, Bayupati, I. P. A., & Arsa, D. M. S. (2021). Klasifikasi Citra Daging Menggunakan Deep Learning dengan Optimisasi Hard Voting. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 656–662. https://doi.org/10.29207/resti.v5i4.3247

Rismiyati, R., & Luthfiarta, A. (2021). VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification. Telematika, 18(1), 37. https://doi.org/10.31315/telematika.v18i1.4025

Rozaqi, A. J., Sunyoto, A., & Arief, M. R. (2021). Implementasi Transfer Learning pada Algoritma Convolutional Neural Network Untuk Identifikasi Penyakit Daun Kentang. Procedia of Engineering and Life Science, 1(1). https://pels.umsida.ac.id/index.php/PELS/article/view/820

Ruusen, A. S., Veibe, S., & Lembong, R. R. (2021). Penegakan Hukum Pidana Karena Kelalaian Pengemudi Kendaraan Yang Mengakibatkan Kecelakaan Lalu Lintas. Lex Crimen, 10(2), 97–108.

Shidiq, A. L. A., SUhartono, E., & Saidah, S. (2022). Klasifikasi Kecacatan Ban Untuk Mengendalikan Kualitas Produk Menggunakan Model CNN Dengan Arsitektur VGG-16 Classification Of Tire Defect To Control Product Quality Using Cnn Model With VGG-16 Architecture. Telkom University, 8(6), 3216–3225. www.kaggle.com.

Swasono, D. I., Tjandrasa, H., & Fathicah, C. (2019). Classification of tobacco leaf pests using VGG16 transfer learning. Proceedings of 2019 International Conference on Information and Communication Technology and Systems, ICTS 2019, 176–181. https://doi.org/10.1109/ICTS.2019.8850946

Ufriandi, A. (2021). Analisis Tingkat Keausan Terhadap Pemakaian Ban Merek a, B Dan C Menggunakan Ban Standar 90/90-14 46 P. Jurnal Surya Teknika, 8(1), 282–288. https://doi.org/10.37859/jst.v8i1.2678

Wang, R., Guo, Q., Lu, S., & Zhang, C. (2019). Tire Defect Detection Using Fully Convolutional Network. IEEE Access, 7, 43502–43510. https://doi.org/10.1109/ACCESS.2019.2908483.

Hendarawan, I. E. (2022). Vehicle Tire Crack Classification Using ResNet50 Architecture. SATIN - Sains dan Teknologi Informasi, 9(1). https://doi.org/10.33372/stn.v9i1.902

Published
2023-08-01
How to Cite
nazhirin, ahmad, Muttaqin, M., & Hermanto, T. (2023). KLASIFIKASI KONDISI BAN KENDARAAN MENGGUNAKAN ARSITEKTUR VGG16. INTI Nusa Mandiri, 18(1), 1 - 12. https://doi.org/10.33480/inti.v18i1.4270
Article Metrics

Abstract viewed = 306 times
PDF downloaded = 319 times