DEEP GATED RECURRENT UNITS PARAMETER TRANSFORMATION FOR OPTIMIZING ELECTRIC VEHICLE POPULATION PREDICTION ACCURACY
DOI:
https://doi.org/10.33480/jitk.v10i4.6429Keywords:
deep learning, electric vehicles, gated recurrent units, optimation, predictionAbstract
The development of electric vehicles is an important innovation in reducing greenhouse gas emissions while reducing dependence on fossil fuels. The main problem in developing electric vehicles is the lack of adequate infrastructure. Inaccurate predictions regarding the number of electric vehicles hinder adequate infrastructure planning and development. This research proposes the use of the Gated Recurrent Units (GRU) algorithm to improve the accuracy of electric vehicle population predictions by carrying out GRU parameter transformations. This parameter transformation involves searching and adjusting the parameters of the GRU model in more depth to increase its ability to handle uncertainty in electric vehicle population data. After carrying out the training and testing process, the result was that the hyperparameter model using RandomizedSearchCV was the best model because it had the highest accuracy compared to other models tested with a combination of GRU_unit 64 and 128, dropout 0.5 and 0.6, batch size 64 and the number of epochs was 100 which had MAE results: 257.94, MSE: 66655.087, RMSE: 258.176, and Accuracy of 100%.
Downloads
References
K. E. ArunKumar, D. V. Kalaga, C. M. S. Kumar, M. Kawaji, and T. M. Brenza, “Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells,” Chaos, Solitons and Fractals, vol. 146, p. 110861, 2021, doi: 10.1016/j.chaos.2021.110861.
S. A. Almohaimeed, “Electric Vehicle Deployment and Integration in the Saudi Electric Power System,” World Electric Vehicle Journal, vol. 13, no. 5. p. 84, 2022. doi: 10.3390/wevj13050084.
S. Gurumoorthy, A. K. Kokku, P. Falkowski-Gilski, and P. B. Divakarachari, “Effective Air Quality Prediction Using Reinforced Swarm Optimization and Bi-Directional Gated Recurrent Unit,” Sustainability, vol. 15, no. 14, pp. 1–19, 2023, doi: 10.3390/su151411454.
W. Wen, S. Yang, P. Zhou, and S. Z. Gao, “Impacts of COVID-19 On The Electric Vehicle Industry: Evidence From China,” Renewable and Sustainable Energy Reviews, vol. 144, 2020.
M. K. Hasan, M. Mahmud, A. K. M. Ahasan Habib, S. M. A. Motakabber, and S. Islam, “Review of Electric Vehicle Energy Storage and Management System: Standards, Issues, and Challenges,” Journal of Energy Storage, vol. 41, no. July, 2021, doi: 10.1016/j.est.2021.102940.
Z. Chen, H. Zhao, Y. Zhang, S. Shen, J. Shen, and Y. Liu, “State of Health Estimation for Lithium-Ion Batteries Based on Temperature Prediction and Gated Recurrent Unit Neural Network,” Journal of Power Sources, vol. 521, pp. 0–27, 2022, doi: 10.1016/j.jpowsour.2021.230892.
X. Liu, Y. Wang, X. Wang, H. Xu, C. Li, and X. Xin, “Bi-Directional Gated Recurrent Unit Neural Network Based Nonlinear Equalizer for Coherent Optical Communication System,” Optics Express, vol. 29, no. 4, p. 5923, 2021, doi: 10.1364/oe.416672.
J. Gidseg, “The Impact of Electric Vehicle Charging Stations on Consumers,” Journal of Student Research, vol. 12, no. 3. 2023. doi: 10.47611/jsrhs.v12i3.4996.
R. Anastasya and S. B. Putri, “SDGs 7: Efektivitas Program Penggunaan Bus Listrik Guna Mendorong Transportasi Publik Ramah Lingkungan,” Journal of Environmental Economics and Sustainability, vol. 1, no. 3, pp. 1–13, 2024, doi: 10.47134/jees.v1i3.343.
G. Rajendran, C. A. Vaithilingam, N. Misron, K. Naidu, and M. R. Ahmed, “A Comprehensive Review on System Architecture and International Standards for Electric Vehicle Charging Stations,” Journal of Energy Storage, vol. 42, 2021, doi: 10.1016/j.est.2021.103099.
I. Miri, A. Fotouhi, and N. Ewin, “Electric Vehicle Energy Consumption Modelling and Estimation—A Case Study,” International Journal of Energy Research, vol. 45, no. 1, pp. 501–520, 2021, doi: 10.1002/er.5700.
J. Abramson et al., “Accurate structure prediction of biomolecular interactions with AlphaFold 3,” Nature, vol. 630, no. 8016, pp. 493–500, 2024, doi: 10.1038/s41586-024-07487-w.
S. Eide, D. S. Leslie, and A. Frigessi, “Dynamic slate recommendation with gated recurrent units and Thompson sampling,” Data Mining and Knowledge Discovery, vol. 36, no. 5. pp. 1756–1786, 2022. doi: 10.1007/s10618-022-00849-w.
N. Antulov-Fantulin, A. Cauderan, and P. N. Kolm, “A Dynamic Regime-Switching Model Using Gated Recurrent Straight-Through Units,” SSRN Electronic Journal. 2024. doi: 10.2139/ssrn.4810879.
A. Almutairi, A. Keshavarz-Haddad, and E. Aryafar, “A deep learning framework for blockage mitigation and duration prediction in mmWave wireless networks,” Ad Hoc Networks, vol. 162. 2024. doi: 10.1016/j.adhoc.2024.103562.
C. H. Wang and W. Q. Li, “A hybrid model of modal decomposition and gated recurrent units for short-term load forecasting,” PeerJ Computer Science, vol. 9. 2023. doi: 10.7717/peerj-cs.1514.
R. Feng, “Gated Recurrent Units for Lithofacies Classification Based on Seismic Inversion,” Artificial Intelligent Approaches in Petroleum Geosciences. pp. 97–113, 2024. doi: 10.1007/978-3-031-52715-9_3.
S. A. Kellerhals, F. De Leeuw, and C. Rodriguez Rivero, “Cloud Nowcasting with Structure-Preserving Convolutional Gated Recurrent Units,” Atmosphere, vol. 13, no. 10. p. 1632, 2022. doi: 10.3390/atmos13101632.
J. Pardede and M. F. Raspati, “Gated Recurrent Units dalam Mendeteksi Obstructive Sleep Apnea,” MIND Journal, vol. 6, no. 2. pp. 221–235, 2021. doi: 10.26760/mindjournal.v6i2.221-235.
I. Carolina and T. Haryanto, “Modeling Of Hyperparameter Tuned RNN-LSTM and Deep Learning For Garlic Price Forecasting In Indonesia,” Journal of Informatics and Telecommunication Engineering, vol. 7, no. 2, pp. 502–513, 2024, doi: 10.31289/jite.v7i2.10714.
B. Supranda, Solikhun, and Z. A. Siregar, “Penerapan Jaringan Syaraf Tiruan Backpropagation Dalam Memprediksi Jumlah Pertumbuhan Kendaraan Di Provinsi Sumatera Utara,” Resolusi : Rekayasa Teknik Informatika dan Informasi, vol. 2, no. 4, pp. 152–160, 2022, doi: 10.30865/resolusi.v2i4.333.
H. Khodijah, “Implementasi Jaringan Saraf Tiruan Untuk Memprediksi Penjualan Sepeda Motor Listrik,” JPILKOM (Jurnal Penelitian Ilmu Komputer), vol. 2, no. 3, pp. 103–108, 2024.
K. Prayogi, W. Gata, and D. P. Kussanti, “Prediksi Harga Saham Bank Central Asia Menggunakan Algoritma Deep Learning GRU,” Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 13, no. 1, pp. 647–658, 2024, doi: 10.35889/jutisi.v13i1.1910.
J. M. Lopez, M. Rivera, and A. Mendez, “Timescale Predictions Using Gated Recurrent Units,” Proceedings of the XXXVth URSI General Assembly and Scientific Symposium – GASS 2023. 2023. doi: 10.46620/ursigass.2023.1371.iztl5570.
S. Park, Y. Choi, and C. K. Kim, “Precipitation Nowcasting with Graph Neural Network and Gated Recurrent Units,” International Conference on Information Networking. pp. 102–107, 2024. doi: 10.1109/ICOIN59985.2024.10572062.
D. Varma, A. Nehansh, and P. Swathy, “Data Preprocessing Toolkit : An Approach to Automate Data Preprocessing,” Interantional Journal of Scientific Research in Engineering and Management, vol. 07, no. 03. 2023. doi: 10.55041/ijsrem18270.
M. Açikkar, “Fast grid search: A grid search-inspired algorithm for optimizing hyperparameters of support vector regression,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 32, no. 1. pp. 68–92, 2024. doi: 10.55730/1300-0632.4056.
A. Tunçel, “Comparison of earthquake location parameters determined using grid search and manta ray foraging optimization,” Acta Geophysica, vol. 72, no. 4. pp. 2581–2596, 2024. doi: 10.1007/s11600-024-01359-7.
H. Lin et al., “Time Series-Based Groundwater Level Forecasting Using Gated Recurrent Unit Deep Neural Networks,” Engineering Applications of Computational Fluid Mechanics, vol. 16, no. 1, pp. 1655–1672, 2022, doi: 10.1080/19942060.2022.2104928.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jeni Sugiandi, Solikhun Solikhun, Anjar Wanto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.