IMPLEMENTATION OF K-MEDOIDS METHOD FOR HEART DISEASE PREDICTION USING QUANTUM COMPUTING AND MANHATTAN DISTANCE
Keywords:
data mining, K-Medoids, manhattan distance, quantum computing, qubitAbstract
Heart disease is a severe health condition characterized by dysfunctions in the heart and blood vessels, which can be fatal if not properly managed. Early detection and prediction of heart disease are crucial for understanding the prevalence and determining patients' quality of life. In this study, quantum computing is applied to enhance the performance of the K-Medoids method. A comparative analysis of these methods is conducted, focusing on their performance. The investigation utilizes a dataset of heart disease patient medical records. This dataset includes various attributes used to predict heart disease patterns. The dataset is tested using both the classical and K-Medoids methods with a quantum computing approach, employing Manhattan distance calculations. This study's findings reveal that applying quantum computing to the K-Medoids method results in clustering accuracy stability of 85%, equivalent to the classical method. Although there is no increase in accuracy, the quantum computing approach demonstrates potential improvements in data processing efficiency. These results highlight that the K-Medoids method with a quantum computing approach can contribute significantly to faster and more efficient medical data analysis. However, further research is needed for optimization and testing on more extensive and more diverse datasets.
Downloads
References
H. W. Dhany, “Performa Algoritma K-Nearest Neighbour dalam Memprediksi Penyakit Jantung,” Semin. Nas. Inform., pp. 176–179, 2021, [Online]. Available: https://www.kaggle.com/
P. A. W. Suwaryo et al., “Melangkah Menuju Hidup Sehat: Peningkatan Pengetahuan Keluarga tentang Pencegahan Penyakit Jantung Koroner,” J. Pengabdi. Perawat, vol. 2, no. 2, pp. 42–48, 2023, doi: 10.32584/jpp.v2i2.2185.
F. Bray, M. Laversanne, E. Weiderpass, and I. Soerjomataram, “The ever-increasing importance of cancer as a leading cause of premature death worldwide,” Cancer, vol. 127, no. 16, pp. 3029–3030, 2021, doi: 10.1002/cncr.33587.
M. Amini, F. Zayeri, and M. Salehi, “Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017,” BMC Public Health, vol. 21, no. 1, pp. 1–12, 2022, doi: 10.1186/s12889-021-10429-0.
A. Timmis et al., “European Society of Cardiology: cardiovascular disease statistics 2021,” Eur. Hear. J. - Qual. Care Clin. Outcomes, vol. 8, no. 4, pp. 377–382, 2022, doi: 10.1093/ehjqcco/qcac014.
A. R. Ananda, D. F. Dela Zalukhu, and F. G. Junior, “Pengetahuan Perawat Tentang Highquality Cardiopulmonary Resuscitation (CPR) di Enam Rumah Sakit Swasta di Indonesia,” Nurs. Curr. J. Keperawatan, vol. 9, no. 2, 2021.
R. H. Sachrrial and A. Iskandar, “Analisa Perbandingan Complate Linkage AHC dan K-Medoids Dalam Pengelompokkan Data Kemiskinan di Indonesia,” Build. Informatics, Technol. Sci., vol. 5, no. 2, 2023, doi: 10.47065/bits.v5i2.4310.
A. Atira and B. Nurina Sari, “Penerapan Silhouette Coefficient, Elbow Method dan Gap Statistics untuk Penentuan Cluster Optimum dalam Pengelompokkan Provinsi di Indonesia Berdasarkan Indeks Kebahagiaan,” J. Ilm. Wahana Pendidik., vol. 9, no. 17, pp. 76–86, 2023, doi: https://doi.org/10.5281/zenodo.8282638.
M. H. Santoso, “Application of Association Rule Method Using Apriori Algorithm to Find Sales Patterns Case Study of Indomaret Tanjung Anom,” Brill. Res. Artif. Intell., vol. 1, no. 2, pp. 54–66, 2021, doi: 10.47709/brilliance.v1i2.1228.
M. Danny and S. Umam, “Penerapan Data Mining Menggunakan Algoritma Fp-Growth Untuk Menganalisa Pola Penjualan Obat (Studi Kasus: Klinik Annisa),” Pros. SAINTEK Univ. Pelita Bangsa, vol. 1, no. 1, pp. 159–164, 2022.
M. A. Senubekti and L. A. Puspita Dewi, “Prinsip Klasifikasi Dan Data Mining Dengan Algoritma C4.5,” Nuansa Inform., vol. 16, no. 2, pp. 87–93, 2022, doi: 10.25134/nuansa.v16i2.5834.
K. Aldiyatna, N. Rahaningsih, and R. D. Dana, “Penerapan Data Mining Untuk Clustering Penyakit Diare Menggunakan Algoritma K-Means ( Studi Kasus : Puskesmas Beber ),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3124–3131, 2024, doi: https://doi.org/10.36040/jati.v8i3.9616.
R. Rofiani, L. Oktaviani, D. Vernanda, and T. Hendriawan, “Penerapan Metode Klasifikasi Decision Tree dalam Prediksi Kanker Paru-Paru Menggunakan Algoritma C4. 5,” J. Tekno Kompak, vol. 18, no. 1, pp. 126–139, 2024, doi: https://doi.org/10.33365/jtk.v18i1.3525.
N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” J. Ilm. Inform. Dan Ilmu Komput., vol. 3, no. 1, pp. 46–56, 2024, doi: https://doi.org/10.58602/jima-ilkom.v3i1.26.
B. Ulum, E. Tohidi, and N. D. Nuris, “Penerapan Algoritma K-Medoids Dalam Menentukan Cluster Kabupaten / Kota Berdasarkan Migrasi Penduduk Jawa Barat,” JUTITI J. Tek. Inform. Dan Teknol. Inf., vol. 4, no. 1, 2024, doi: https://doi.org/10.55606/jutiti.v4i1.3581.
A. Fadlurohman and I. M. Nur, “Pengelompokan Provinsi di Indonesia Berdasarkan Indikator Perumahan dan Kesehatan Lingkungan Menggunakan Metode K-Medoids,” Pros. Semin. Nas. UNIMUS, vol. 6, pp. 1168–1180, 2023.
W. Wang, S. Li, and Y. Sun, “Application of a novel improved Manhattan distance on bearing fault diagnosis,” Springer Nat., pp. 0–21, 2021, doi: //doi.org/10.21203/rs.3.rs-2599124/v1.
P. N. Pratama Artana, E. Prakarsa Mandyartha, and M. Hanindia Prami S, “Penerapan Data Mining Pada Algotirma Hierarchical Clustering Tentang Pengelolaan Mitra Perjalanan Wisatawan Bali Backpaker,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, pp. 2903–2909, 2024, doi: 10.36040/jati.v7i4.7284.
P. Nurul Sabrina, A. Kania Ningsih, and F. Kasyidi, “Interpretasi dan Visualisasi Hasil Clustering Menggunakan K-Medoid untuk Identifikasi Penyebaran Virus Covid-19,” J. ICT Inf. Commun. Technol., vol. 21, no. 1, pp. 1–7, 2022.
M. N. P. Pamulang, M. N. Aini, and U. Enri3, “Komparasi Distance Measure Pada K-Medoids Clustering untuk Pengelompokkan Penyakit ISPA,” Edumatic J. Pendidik. Inform., vol. 5, no. 1, pp. 99–107, 2021, doi: 10.29408/edumatic.v5i1.3359.
H. Ramdan, A. Gunawan, and G. Gunawan, “Analisis Pengaruh Kardiovaskular Dalam Kasus Covid-19 Terhadap Obesitas Menggunakan Metode K-Medoid,” Indones. J. Comput. Sci., vol. 3, no. 1, pp. 16–24, 2024, doi: 10.31294/ijcs.v3i1.2558.
H. Y. Huang et al., “Quantum advantage in learning from experiments,” Science (80-. )., vol. 376, no. 6598, pp. 1182–1186, 2022, doi 10.1126/science.abn7293.
A. Supriyadi, A. Triayudi, and I. D. Sholihati, “Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 229–240, 2021, doi: 10.29100/jipi.v6i2.2008.
S. Gymnastiar and A. Bahtiar, “Penerapan Algorima K-Means Clustering Untuk Mengelompokan Data Kejadian Kekeringan Di Kabupaten Cirebon,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2325–2331, 2024, doi: 10.36040/jati.v8i2.8948.
I. I. Ridho, A. A. G. B. Ariana, and A. P. Windarto, “Optimasi Fungsi Pembelajaran Jaringan Saraf Tiruan dalam Meningkatkan Akurasi pada Prediksi Ekspor Kopi Menurut Negara Tujuan Utama,” Build. Informatics, Technol. Sci., vol. 4, no. 4, 2023, doi: 10.47065/bits.v4i4.3240.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mochamad Wahyudi, Dimas Trianda, Lise Pujiastuti, Solikhun Solikhun
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.