OPTIMIZING THE KNN ALGORITHM FOR CLASSIFYING CHRONIC KIDNEY DISEASE USING GRIDSEARCHCV

Authors

  • Muhammad Rahmansyah Siregar STIKOM Tunas Bangsa
  • Dedy Hartama STIKOM Tunas Bangsa
  • Solikhun Solikhun STIKOM Tunas Bangsa

DOI:

https://doi.org/10.33480/jitk.v10i3.6214

Keywords:

Optimization, KNN, GridsearchCV, Chronic Kidney Diseases, Classification

Abstract

Chronic Kidney Disease (CKD) is a progressive condition that impairs kidney function and cannot be cured. Early detection is crucial for effective management and therapy. However, diagnosing CKD is challenging as patients often have comorbidities such as diabetes, hypertension, or heart disease, which complicate diagnosis and treatment. Accurate classification methods are essential for early detection. K-Nearest Neighbor (KNN) is a classification algorithm that groups data based on feature similarity. K-NN is an algorithm that is resistant to outliers, easy to implement, and highly adaptable. It only requires distance calculations between data points and does not involve complex parameters. However, its performance depends on hyperparameters such as the number of neighbors (k), weighting, and distance metric. Incorrect hyperparameter selection can lead to overfitting, underfitting, or reduced accuracy. To address these issues, GridSearchCV is used to optimize KNN by systematically selecting the best hyperparameters, ensuring improved accuracy and reduced overfitting. This optimization enhances the model’s reliability in early CKD detection compared to other methods. This study aims to determine the optimal KNN parameters for CKD classification using GridSearchCV. The results show 8.05% accuracy improvement and reduction in overfitting, with the prediction gap between training and testing decreasing from 6% to only 1.15%. These enhancements contribute to more reliable CKD diagnosis, enabling accurate early detection and better clinical decision-making.

Downloads

Download data is not yet available.

References

I. Wisnuadji Gamadarenda and I. Waspada, “Implementasi Data Mining Untuk Deteksi Penyakit Ginjal Kronis (Pgk) Menggunakan K-Nearest Neighbor (Knn) Dengan Backward Elimination,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 7, no. 2, pp. 417–426, 2020, doi: 10.25126/jtiik.202071896.

D. Anggraini, “Aspek Klinis Dan Pemeriksaan Laboratorium Penyakit Ginjal Kronik,” An-Nadaa Jurnal Kesehatan Masyarakat, vol. 9, no. 2, p. 236, 2022, doi: 10.31602/ann.v9i2.9229.

R. Dewi and A. Mustofa, “Penurunan Intensitas Rasa Haus Pasien Penyakit Ginjal Kronik Yang Menjalani Hemodialisa Dengan Menghisap Es Batu,” Ners Muda, vol. 2, no. 2, p. 17, Aug. 2021, doi: 10.26714/nm.v2i2.7154.

R. Simorangkir, T. M. Andayani, and C. Wiedyaningsih, “Faktor-Faktor yang Berhubungan dengan Kualitas Hidup Pasien Penyakit Ginjal Kronis yang Menjalani Hemodialisis,” Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia, vol. 8, no. 1, p. 83, 2021, doi: 10.20473/jfiki.v8i12021.83-90.

N. P. Nugraha, R. Azim, S. Z. Daffa, and P. S. Ningayu, “Perbandingan Akurasi Metode Naïve Bayes dan Metode KNN untuk Memprediksi Gagal Ginjal Kronis,” Jurnal Rekayasa Elektro Sriwijaya, vol. 5, no. 1, pp. 1–10, Nov. 2023, doi: 10.36706/jres.v5i1.63.

E. Y. Chrisanto, R. P. Rahmawati, P. S. Azahra, and W. Amelia, “Penyuluhan kesehatan tentang prilaku hidup sehat pasien dengan gangguan ginjal kronik,” JOURNAL OF Public Health Concerns, vol. 2, no. 1, pp. 34–40, Feb. 2022, doi: 10.56922/phc.v2i1.184.

H. D. Siswaja and Y. Ramdhani, “Pendekatan Algoritma Neural Network dan Genetic Algorithm Untuk Prediksi Penyakit Ginjal Kronis,” Jurnal Responsif, vol. 6, no. 2, pp. 232–239, 2024, [Online]. Available: https://ejurnal.ars.ac.id/index.php/jti

U. Hasanah, N. R. Dewi, L. Ludiana, A. T. Pakarti, and A. Inayati, “Analisis Faktor-Faktor Risiko Terjadinya Penyakit Ginjal Kronik Pada Pasien Hemodialisis,” Jurnal Wacana Kesehatan, vol. 8, no. 2, p. 96, Nov. 2023, doi: 10.52822/jwk.v8i2.531.

M. Rizal, M. Z. Syahaf, S. R. Priyambodo, and Y. Rhamdani, “Optimasi Algoritma Naïve Bayes Menggunakan Forward Selection Untuk Klasifikasi Penyakit Ginjal Kronis,” Naratif : Jurnal Nasional Riset, Aplikasi dan Teknik Informatika, vol. 5, no. 1, pp. 71–80, Jun. 2023, doi: 10.53580/naratif.v5i1.200.

Z. Zuriati and N. Qomariyah, “Klasifikasi Penyakit Stroke Menggunakan Algoritma K-Nearest Neighbor (KNN),” ROUTERS: Jurnal Sistem dan Teknologi Informasi, vol. 1, no. 1, pp. 1–8, Nov. 2022, doi: 10.25181/rt.v1i1.2665.

E. Saputro and D. Rosiyadi, “Penerapan Metode Random Over-Under Sampling Pada Algoritma Klasifikasi Penentuan Penyakit Diabetes,” Bianglala Informatika, vol. 10, no. 1, pp. 42–47, Mar. 2022, doi: 10.31294/bi.v10i1.11739.

G. Abdurrahman, “Klasifikasi Penyakit Diabetes Melitus Menggunakan Adaboost Classifier,” JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), vol. 7, no. 1, pp. 59–66, Mar. 2022, doi: 10.32528/justindo.v7i1.4949.

K. Widya Kayohana, “KLASIFIKASI Penyakit Hati Menggunakan Random Forest Dan Knn,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 4, pp. 7924–7929, Aug. 2024, doi: 10.36040/jati.v8i4.10457.

R. Rozaq, “Klasifikasi Penyakit Dengue Menggunakan Algoritma K-Nearest Neighbors Berbasis Flask,” Remik, vol. 6, no. 3, pp. 359–369, Aug. 2022, doi: 10.33395/remik.v6i3.11501.

Q. A’yuniyah et al., “Implementasi Algoritma Naïve Bayes Classifier (NBC) untuk Klasifikasi Penyakit Ginjal Kronik,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 1, p. 72, Sep. 2022, doi: 10.30865/json.v4i1.4781.

Z. Maisat, E. Darmawan, and A. Fauzan, “Implementasi Optimasi Hyperparameter GridSearchCV Pada Sistem Prediksi Serangan Jantung Menggunakan SVM Implementation of GridSearchCV Hyperparameter Optimization in Heart Attack Prediction System Using SVM,” unipdu, vol. 13, no. 1, pp. 8–15, 2023, doi: https://doi.org/10.26594/teknologi.v13i1.3098.

A. Sepharni, I. E. Hendrawan, and C. Rozikin, “Klasifikasi Penyakit Jantung dengan Menggunakan Algoritma C4.5,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 7, no. 2, p. 117, Dec. 2022, doi: 10.30998/string.v7i2.12012.

Y. Pratama, A. Prayitno, D. Azrian, N. Aini, Y. Rizki, and E. Rasywir, “Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma K-Nearest Neighbor,” Bulletin of Computer Science Research, vol. 3, no. 1, pp. 52–56, Dec. 2022, doi: 10.47065/bulletincsr.v3i1.203.

E. Laksono, A. Basuki, and F. Bachtiar, “Optimization of K Value in KNN Algorithm for Spam and Ham Email Classification,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 2, pp. 377–383, Apr. 2020, doi: 10.29207/resti.v4i2.1845.

N. M. Putry, “Komparasi Algoritma Knn Dan Naïve Bayes Untuk Klasifikasi Diagnosis Penyakit Diabetes Mellitus,” EVOLUSI : Jurnal Sains dan Manajemen, vol. 10, no. 1, pp. 45–57, Apr. 2022, doi: 10.31294/evolusi.v10i1.12514.

S. T. Kusuma and T. B. Sasongko, “Optimasi K-Nearest Neighbor dengan Grid Search CV pada Prediksi Kanker Paru-Paru,” The Indonesian Journal of Computer Science, vol. 12, no. 4, pp. 2162–2171, Aug. 2023, doi: 10.33022/ijcs.v12i4.3267.

I. P. Putri, “Analisis Performa Metode K- Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular,” Indonesian Journal of Data and Science, vol. 2, no. 1, pp. 21–28, Mar. 2021, doi: 10.33096/ijodas.v2i1.25.

Rima Dias Ramadhani, A. Nur Aziz Thohari, C. Kartiko, A. Junaidi, T. Ginanjar Laksana, and N. Alim Setya Nugraha, “Optimasi Akurasi Metode Convolutional Neural Network untuk Identifikasi Jenis Sampah,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 312–318, Apr. 2021, doi: 10.29207/resti.v5i2.2754.

N. Rikatsih, M. Anshori, R. Siwi Pradini, and F. Faurika, “K-Nearest Neighbor Method for Early Detection of Diabetes Patients Based on Symptoms and Clinical Data,” Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 9, no. 2, pp. 187–193, Aug. 2024, doi: 10.25139/inform.v9i2.8582.

Y. Putra Dinata, M. Fikry, F. Yanto, and E. Pandu Cynthia, “Analisis Sentimen Terhadap Sebuah Figur Publik di Twitter Menggunakan Metode K-Nearest Neighbor,” Media Online), vol. 4, no. 6, pp. 2822–2829, 2024, doi: 10.30865/klik.v4i6.1904.

R. Fadilah, Y. H. Chrisnanto, and G. Abdillah, “Pengaruh metode pengukuran jarak dan smote pada klasifikasi penilaian kredit,” JIRE (Jurnal Informatika & Rekayasa Elektronika, vol. 7, no. 2, pp. 193–202, 2024, doi: https://doi.org/10.36595/jire.v7i2.1213.

G. N. Ahmad, H. Fatima, S. Ullah, A. Salah Saidi, and Imdadullah, “Efficient Medical Diagnosis of Human Heart Diseases Using Machine Learning Techniques With and Without GridSearchCV,” IEEE Access, vol. 10, no. March, pp. 80151–80173, 2022, doi: 10.1109/ACCESS.2022.3165792.

V. Wulandari, W. J. Sari, Z. Alfian, L. Legito, and T. Arifianto, “Implementasi Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor untuk Klasifikasi Penyakit Ginjal Kronik,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 710–718, Apr. 2024, doi: 10.57152/malcom.v4i2.1229.

N. Fatimah Indrianti, A. Kania Ningsih, and R. Ilyas, “Implementasi Data Mining Untuk Klasifikasi Penyakit Gagal Ginjal Kronis Menggunakan Metode K-Nearest Neighbor,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 2255–2260, Apr. 2024, doi: 10.36040/jati.v8i2.9464.

Downloads

Published

2025-02-20

How to Cite

[1]
M. R. Siregar, D. Hartama, and S. Solikhun, “OPTIMIZING THE KNN ALGORITHM FOR CLASSIFYING CHRONIC KIDNEY DISEASE USING GRIDSEARCHCV”, jitk, vol. 10, no. 3, pp. 680–689, Feb. 2025.