ENHANCED FLOWER IMAGE CLASSIFICATION USING MOBILENETV2 WITH OPTIMIZED PERFORMANCE
DOI:
https://doi.org/10.33480/jitk.v11i1.6497Keywords:
deep learning, flower classification , MobileNetV2 , optimization algorithmsAbstract
Flower classification is an essential activity in multiple fields, including healthcare, cosmetics, agriculture, and environmental monitoring. Deep learning has achieved notable success in intricate picture categorization problems, especially through the utilization of lightweight convolutional neural network (CNN) architectures like MobileNet and MobileNetV2. This work assesses and contrasts the efficacy of four prevalent optimizers Adam, RMSProp, SGD, and Nadam on datasets of flower and herbal leaf images. Experiments were performed using a uniform training configuration on a CPU-based system devoid of GPU acceleration, evaluating both model efficacy and computational efficiency. Evaluation criteria including accuracy, precision, recall, F1-score, and loss were utilised, augmented by confusion matrix analysis. The findings indicate that MobileNetV2 regularly surpasses the baseline MobileNet, with RMSProp attaining the highest accuracy (99.52%) and the lowest loss (0.0126) on the herbal dataset. In the flower dataset, RMSProp achieved the highest accuracy of 96.67%. Moreover, MobileNetV2 necessitated increased memory and extended training duration, while delivering superior classification performance overall. These findings underscore the significance of optimizer selection and model architecture in lightweight deep learning applications, especially for deployment on resource-limited devices.
Downloads
References
İ. Yağ and A. Altan, “Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments,” Biology (Basel)., vol. 11, no. 12, pp. 1–30, 2022, doi: 10.3390/biology11121732.
S. Navyakala, N. Padmaja, and P. Neelima, “A Study on Flower Classification Using Deep Learning Techniques,” Int. J. Comput. Eng. Res. Trends, vol. 10, no. 4, pp. 161–166, 2023, doi: 10.22362/ijcert/2023/v10/i04/v10i0403.
A. Wanto, S. D. Rizki, S. Andini, S. Surmayanti, N. L. W. S. R. Ginantra, and H. Aspan, “Combination of Sobel+Prewitt Edge Detection Method with Roberts+Canny on Passion Flower Image Identification,” J. Phys. Conf. Ser., vol. 1933, no. 1, pp. 1–8, 2021, doi: 10.1088/1742-6596/1933/1/012037.
M. Tian and Z. Liao, “Research on flower image classification method based on YOLOv5,” J. Phys. Conf. Ser., vol. 2024, no. 1, 2021, doi: 10.1088/1742-6596/2024/1/012022.
I. Gilang Perwati, N. Suarna, and T. Suprapti, “Analisis Klasifikasi Gambar Bunga Lily Menggunakan Metode Convolutional Neural Network (Cnn) Dalam Pengolahan Citra,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2908–2915, 2024, doi: 10.36040/jati.v8i3.9193.
A. Upadhyay et al., “Deep learning and computer vision in plant disease detection: a comprehensive review of techniques, models, and trends in precision agriculture,” Artif. Intell. Rev., vol. 58, no. 3, pp. 1–64, 2025, doi: 10.1007/s10462-024-11100-x.
Z. Wang, K. Wang, X. Wang, S. Pan, and X. Qiao, “Dynamic ensemble selection of convolutional neural networks and its application in flower classification,” Int. J. Agric. Biol. Eng., vol. 15, no. 1, pp. 216–223, 2022, doi: 10.25165/j.ijabe.20221501.6313.
C. Zhang et al., “An instance-based deep transfer learning method for quality identification of Longjing tea from multiple geographical origins,” Complex Intell. Syst., vol. 9, no. 3, pp. 3409–3428, 2023, doi: 10.1007/s40747-023-01024-4.
G. Batchuluun, S. H. Nam, and K. R. Park, “Deep Learning-Based Plant-Image Classification Using a Small Training Dataset,” Mathematics, vol. 10, no. 17, pp. 1–26, 2022, doi: 10.3390/math10173091.
K. N. A. Nur, N. I. Addyna, A. P. Windarto, A. Wanto, and P. Poningsih, “Optimization of the Inceptionv3 Architecture for Potato Leaf Disease Classification,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 4, pp. 849–858, 2025, doi: 10.33480/jitk.v10i4.6554.
W. Yuan, “AriAplBud: An Aerial Multi-Growth Stage Apple Flower Bud Dataset for Agricultural Object Detection Benchmarking,” Data, vol. 9, no. 2, pp. 1–16, 2024, doi: 10.3390/data9020036.
M. Vardhan and S. Sharma, “Enhancing Plant Pathology with CNNs: A Hierarchical Approach for Accurate Disease Identification,” in ACM International Conference Proceeding Series, New York, NY, USA: ACM, 2024, pp. 159–164. doi: 10.1145/3651781.3651805.
L. M. Abouelmagd, M. Y. Shams, H. S. Marie, and A. E. Hassanien, “An optimized capsule neural networks for tomato leaf disease classification,” Eurasip J. Image Video Process., vol. 2024, no. 1, pp. 1–21, 2024, doi: 10.1186/s13640-023-00618-9.
R. Amalia and F. Panjaitan, “Mask Detection Using Convolutional Neural Network Algorithm,” J. RESTI, vol. 6, no. 4, pp. 639–647, 2022, doi: 10.29207/resti.v6i4.4276.
R. Abdulkadirov, P. Lyakhov, and N. Nagornov, “Survey of Optimization Algorithms in Modern Neural Networks,” Mathematics, vol. 11, no. 11, pp. 1–37, 2023, doi: 10.3390/math11112466.
R. O. Ogundokun et al., “Enhancing Skin Cancer Detection and Classification in Dermoscopic Images through Concatenated MobileNetV2 and Xception Models,” Bioengineering, vol. 10, no. 8, 2023, doi: 10.3390/bioengineering10080979.
S. M. Saqib et al., “Lumpy skin disease diagnosis in cattle: A deep learning approach optimized with RMSProp and MobileNetV2,” PLoS One, vol. 19, no. 8 August, pp. 1–16, 2024, doi: 10.1371/journal.pone.0302862.
W. Akanji et al., “A blind steganalysis-based predictive analytics of numeric image descriptors for digital forensics with Random Forest & SqueezeNet,” 2022. doi: 10.1109/ITED56637.2022.10051337.
I. U. W. Mulyono, Y. Kusumawati, A. Susanto, C. A. Sari, H. M. M. Islam, and M. Doheir, “Hiragana Character Classification Using Convolutional Neural Networks Methods based on Adam, SGD, and RMSProps Optimizer,” Sci. J. Informatics, vol. 11, no. 2, pp. 467–476, 2024, doi: 10.15294/sji.v11i2.2313.
M. Alkanan and Y. Gulzar, “Enhanced corn seed disease classification: leveraging MobileNetV2 with feature augmentation and transfer learning,” Front. Appl. Math. Stat., vol. 9, pp. 1–12, 2023, doi: 10.3389/fams.2023.1320177.
Solikhun, A. P. Windarto, and P. Alkhairi, “Bone fracture classification using convolutional neural network architecture for high-accuracy image classification,” Int. J. Electr. Comput. Eng., vol. 14, no. 6, pp. 6466–6477, 2024, doi: 10.11591/ijece.v14i6.pp6466-6477.
A. N. M. Ramadhani, G. W. Saraswati, R. T. Agung, and H. A. Santoso, “Performance Comparison of Convolutional Neural Network and MobileNetV2 for Chili Diseases Classification,” J. RESTI, vol. 7, no. 4, pp. 940–946, 2023, doi: 10.29207/resti.v7i4.5028.
H. Fırat and H. Üzen, “Detection of Pneumonia Using A Hybrid Approach Consisting of MobileNetV2 and Squeeze-and-Excitation Network,” Türk Doğa ve Fen Derg., vol. 13, no. 1, pp. 54–61, 2024, doi: 10.46810/tdfd.1363218.
V. Venkatesh, N. Yallappa, S. U. Hegde, and S. R. Stalin, “Fine-Tuned MobileNet Classifier for Classification of Strawberry and Cherry Fruit Types,” J. Comput. Sci., vol. 17, no. 1, pp. 44–54, 2021, doi: 10.3844/jcssp.2021.44.54.
Z. Tang, Y. Liu, M. Xiang, D. Cui, and Q. Li, “Discrimination of VOCs with e-nose consisting of a single MEMS sensor using lightweight deep learning model based on SqueezeNet,” Sensors Actuators B Chem., vol. 422, 2025, doi: 10.1016/j.snb.2024.136640.
S. Khan et al., “Bilevel Hyperparameter Optimization and Neural Architecture Search for Enhanced Breast Cancer Detection in Smart Hospitals Interconnected With Decentralized Federated Learning Environment,” IEEE Access, vol. 12, pp. 63618–63628, 2024, doi: 10.1109/ACCESS.2024.3392572.
A. T. Azar et al., “Automated System for Colon Cancer Detection and Segmentation Based on Deep Learning Techniques,” Int. J. Sociotechnology Knowl. Dev., vol. 15, no. 1, pp. 1–28, 2023, doi: 10.4018/IJSKD.326629.
V. K. Yogamadhavan and G. Mannayee, “Evaluation of Performance of Different Optimizers of Convolutional Neural Network in the Classification of Images of Urban Domestic Solid Waste,” J. Internet Serv. Inf. Secur., vol. 14, no. 3, pp. 42–77, 2024, doi: 10.58346/JISIS.2024.I3.004.
J. Yang, M. Bagavathiannan, Y. Wang, Y. Chen, and J. Yu, “A comparative evaluation of convolutional neural networks, training image sizes, and deep learning optimizers for weed detection in alfalfa,” Weed Technol., vol. 36, no. 4, pp. 512–522, 2022, doi: 10.1017/wet.2022.46.
A. Peryanto, A. Yudhana, and R. Umar, “Convolutional Neural Network and Support Vector Machine in Classification of Flower Images,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 8, no. 1, pp. 1–7, 2022, doi: 10.23917/khif.v8i1.15531.
Q. Aini, Zulfiandri, R. Firmansyah, and Y. M. Arif, “Applying convolutional neural network and Nadam optimization in flower classification,” Bull. Electr. Eng. Informatics, vol. 13, no. 4, pp. 2865–2877, 2024, doi: 10.11591/eei.v13i4.6203.
B. H. Phong, “Classification of Plant Leaves and Flowers Using Image Processing and Deep Neural Networks,” Int. J. Adv. Res. Comput. Sci., vol. 15, no. 5, pp. 34–37, 2024, doi: 10.26483/ijarcs.v15i5.7137.
B. D. Mardiana, W. B. Utomo, U. N. Oktaviana, G. W. Wicaksono, and A. E. Minarno, “Herbal Leaves Classification Based on Leaf Image Using CNN Architecture Model VGG16,” J. RESTI, vol. 7, no. 1, pp. 20–26, 2023, doi: 10.29207/resti.v7i1.4550.
L. Sahoo et al., “Transforming Agriculture through Artificial Intelligence: Advancements in Plant Disease Detection, Applications, and Challenges,” J. Adv. Biol. Biotechnol., vol. 27, no. 5, pp. 381–388, 2024, doi: 10.9734/jabb/2024/v27i5796.
I. H. Kartowisastro and J. Latupapua, “A Comparison of Adaptive Moment Estimation (Adam) and RMSProp Optimisation Techniques for Wildlife Animal Classification Using Convolutional Neural Networks,” Rev. d’Intelligence Artif., vol. 37, no. 4, pp. 1023–1030, 2023, doi: 10.18280/ria.370424.
B. Soujanya, S. Chittineni, T. Sitamahalakshmi, and G. Srinivas, “A CNN based Approach for Handwritten Character Identification of Telugu Guninthalu using Various Optimizers,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 4, pp. 703–710, 2022, doi: 10.14569/IJACSA.2022.0130482.
F. Mehmood, S. Ahmad, and T. K. Whangbo, “An Efficient Optimization Technique for Training Deep Neural Networks,” Mathematics, vol. 11, no. 6, 2023, doi: 10.3390/math11061360.
T. Abbas et al., “Deep Neural Networks for Automatic Flower Species Localization and Recognition,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/9359353.
D. Hastari, S. Winanda, A. R. Pratama, N. Nurhaliza, and E. S. Ginting, “Application of Convolutional Neural Network ResNet-50 V2 on Image Classification of Rice Plant Disease,” Public Res. J. Eng. Data Technol. Comput. Sci., vol. 1, no. 2, pp. 71–77, 2024, doi: 10.57152/predatecs.v1i2.865.
K. Adem, E. Kavalcı Yılmaz, F. Ölmez, K. Çelik, and H. Bakır, “A Comparative Analysis of Deep Learning Parameters for Enhanced Detection of Yellow Rust in Wheat,” Uluslararası Muhendis. Arastirma ve Gelistirme Derg., vol. 16, no. 02, pp. 659–667, 2024, doi: 10.29137/umagd.1390763.
D. Shan, S. Zhang, X. Wang, and P. Zhang, “Path-Planning Strategy: Adaptive Ant Colony Optimization Combined with an Enhanced Dynamic Window Approach,” Electron., vol. 13, no. 5, pp. 1–18, 2024, doi: 10.3390/electronics13050825.
A. Tulasi, M. S, and M. D. Pappu, “A Review on MobileNet, ResNet and SqueezeNet for iOS & iPadOS for on Device Training and Prediction using CoreML,” Int. Res. J. Eng. Technol., vol. 8, no. 6, pp. 716–718, 2021, doi: 10.13140/RG.2.2.14059.67365.
P. langgeng wicaksono ellwid Putra, M. Naufal, and E. Y. Hidayat, “A Comparative Study of MobileNet Architecture Optimizer for Crowd Prediction,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 241–247, 2023, doi: 10.30591/jpit.v8i3.5703.
H. Chen, G. Zhou, W. He, X. Duan, and H. Jiang, “Classification and identification of agricultural products based on improved MobileNetV2,” Sci. Rep., vol. 14, no. 1, pp. 1–14, 2024, doi: 10.1038/s41598-024-53349-w.
A. E. Putra, M. F. Naufal, and V. R. Prasetyo, “Klasifikasi Jenis Rempah Menggunakan Convolutional Neural Network dan Transfer Learning,” J. Edukasi dan Penelit. Inform., vol. 9, no. 1, p. 12, 2023, doi: 10.26418/jp.v9i1.58186.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ade Ismiaty Ramadhona Ht Barat, Wiwik Sri Astuti, Dedy Hartama, Agus Perdana Windarto, Anjar Wanto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.