OPTIMIZING SHUFFLENET WITH GRIDSEARCHCV FOR GEOSPATIAL DISASTER MAPPING IN INDONESIA

Authors

  • Abdullah Ahmad STIKOM Tunas Bangsa
  • Dedy Hartama STIKOM Tunas Bangsa
  • Solikhun Solikhun STIKOM Tunas Bangsa
  • Poningsih Poningsih STIKOM Tunas Bangsa

DOI:

https://doi.org/10.33480/jitk.v11i2.6747

Keywords:

Convolutional Neural Network (CNN) , Geospatial Disaster Classification, GridSearchCV , Hyperparameter Optimization , ShuffleNet

Abstract

Accurate classification of natural disasters is crucial for timely response and effective mitigation. However, conventional approaches often suffer from inefficiency and limited reliability, highlighting the need for automated deep learning solutions. This study proposes an optimized Convolutional Neural Network (CNN) based on the lightweight ShuffleNet architecture, enhanced through GridSearchCV for systematic hyperparameter tuning. Using a geospatial dataset of 3,667 images representing earthquake, flood, and wind-related disasters in Indonesia, the optimized ShuffleNet model achieved a peak accuracy of 99.97%, outperforming baseline CNNs such as MobileNet, GoogleNet, ResNet, DenseNet, and standard ShuffleNet. While these results demonstrate the potential of combining lightweight architectures with automated optimization, the exceptionally high performance also indicates possible risks of overfitting and dataset bias due to limited variability. Therefore, future research should validate this approach using larger, multi-source datasets to ensure robustness and real-world applicability

Downloads

Download data is not yet available.

References

D. Tin, L. Cheng, D. Le, R. Hata, and G. Ciottone, “Natural disasters: a comprehensive study using EMDAT database 1995–2022,” Public Health, vol. 226, pp. 255–260, 2024, doi: 10.1016/j.puhe.2023.11.017.

A. S. Albahri et al., “A systematic review of trustworthy artificial intelligence applications in natural disasters,” Comput. Electr. Eng., vol. 118, no. May, 2024, doi: 10.1016/j.compeleceng.2024.109409.

R. Vallabhaneni and V. Veeramachaneni, “Developing a Disaster Recovery Plan to Enhance Corporate Resilience and Ensure Business Continuity,” Eng. Technol. J., vol. 09, no. 10, pp. 5332–5334, 2024, doi: 10.47191/etj/v9i10.11.

J. M. C. Silva, L. S. Araujo, R. R. Torres, and L. C. F. Barbosa, “The sustainability of development pathways and climate change vulnerability in the Americas,” Ecol. Econ., vol. 220, no. December 2023, 2024, doi: 10.1016/j.ecolecon.2024.108164.

J. Franken and C. Reuter, “Secure Critical Infrastructures,” Sensors, vol. 23, no. 8, pp. 279–301, 2024, doi: 10.1007/978-3-658-44810-3_13.

P. Cui et al., “Scientific challenges of research on natural hazards and disaster risk,” Geogr. Sustain., vol. 2, no. 3, pp. 216–223, 2021, doi: 10.1016/j.geosus.2021.09.001.

K. Nisa’, N. Suprapto, and I. A. Rizki, “Evaluation of Geohazards Research in the World and Pacific Region: A Comparative Bibliometric Study,” Iraqi Geol. J., vol. 57, no. 2, pp. 143–161, 2024, doi: 10.46717/igj.57.2A.11ms-2024-7-21.

M. Maiti and P. Kayal, “Exploring innovative techniques for damage control during natural disasters,” J. Saf. Sci. Resil., vol. 5, no. 2, pp. 147–155, 2024, doi: 10.1016/j.jnlssr.2024.02.004.

J. Zhou, Y. Zhang, C. Li, H. He, and X. Li, “Rockburst prediction and prevention in underground space excavation,” Undergr. Sp., vol. 14, pp. 70–98, 2024, doi: 10.1016/j.undsp.2023.05.009.

M. Kucharczyk and C. H. Hugenholtz, “Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities,” Remote Sens. Environ., vol. 264, no. June, 2021, doi: 10.1016/j.rse.2021.112577.

A. Lavric, C. Beguni, E. Zadobrischi, A. M. Căilean, and S. A. Avătămăniței, “A Comprehensive Survey on Emerging Assistive Technologies for Visually Impaired Persons: Lighting the Path with Visible Light Communications and Artificial Intelligence Innovations,” Sensors, vol. 24, no. 15, 2024, doi: 10.3390/s24154834.

S. K. Abid et al., “Toward an integrated disaster management approach: How artificial intelligence can boost disaster management,” Sustain., vol. 13, no. 22, pp. 1–17, 2021, doi: 10.3390/su132212560.

A. Tanubrata, G. N. Elwirehardja, and B. Pardamean, “Focusing on Correct Regions: Self-Supervised Pre-Training in Lung Disease Classification,” Commun. Math. Biol. Neurosci., vol. 2024, pp. 1–18, 2024, doi: 10.28919/cmbn/8577.

S. Kayikci and T. M. Khoshgoftaar, “Blockchain meets machine learning: a survey,” J. Big Data, vol. 11, no. 1, 2024, doi: 10.1186/s40537-023-00852-y.

S. Neethirajan and B. Kemp, “Sensing and Bio-Sensing Research Digital Livestock Farming,” Sens. Bio-Sensing Res., vol. 32, no. February, p. 100408, 2021, [Online]. Available: https://doi.org/10.1016/j.sbsr.2021.100408

S. M. S. Mohd Daud et al., “Applications of drone in disaster management: A scoping review,” Sci. Justice, vol. 62, no. 1, pp. 30–42, 2022, doi: 10.1016/j.scijus.2021.11.002.

L. Gu, H. Zhang, and X. Wu, “Surveying and mapping of large-scale 3D digital topographic map based on oblique photography technology,” J. Radiat. Res. Appl. Sci., vol. 17, no. 1, p. 100772, 2024, doi: 10.1016/j.jrras.2023.100772.

K. Godewatte Arachchige, P. Branch, and J. But, “Evaluation of Blockchain Networks’ Scalability Limitations in Low-Powered Internet of Things (IoT) Sensor Networks,” Futur. Internet, vol. 15, no. 9, 2023, doi: 10.3390/fi15090317.

M. Kassjański et al., “Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: An Evaluation,” J. Autom. Mob. Robot. Intell. Syst., vol. 18, no. 3, pp. 28–38, 2024, doi: 10.14313/jamris/3-2024/19.

E. Mienye, N. Jere, G. Obaido, I. D. Mienye, and K. Aruleba, “Deep Learning in Finance: A Survey of Applications and Techniques,” AI, vol. 5, no. 4, pp. 2066–2091, 2024, doi: 10.3390/ai5040101.

Z. Saing, H. Djainal, and S. Deni, “Land use balance determination using satellite imagery and geographic information system: case study in South Sulawesi Province, Indonesia,” Geod. Geodyn., vol. 12, no. 2, pp. 133–147, 2021, doi: 10.1016/j.geog.2020.11.006.

M. Chen, S. J. Copley, P. Viola, H. Lu, and E. O. Aboagye, “Radiomics and artificial intelligence for precision medicine in lung cancer treatment,” Semin. Cancer Biol., vol. 93, no. May, pp. 97–113, 2023, doi: 10.1016/j.semcancer.2023.05.004.

T. Das et al., “Analysing Process and Probability of Built-Up Expansion Using Machine Learning and Fuzzy Logic in English Bazar, West Bengal,” Remote Sens., vol. 14, no. 10, 2022, doi: 10.3390/rs14102349.

J. Su, M. Yang, and X. Tang, “Integration of ShuffleNet V2 and YOLOv5s Networks for a Lightweight Object Detection Model of Electric Bikes within Elevators,” Electron., vol. 13, no. 2, 2024, doi: 10.3390/electronics13020394.

M. Daud, F. M. Ugliotti, and A. Osello, “Comprehensive Analysis of the Use of Web-GIS for Natural Hazard Management: A Systematic Review,” Sustain. , vol. 16, no. 10, 2024, doi: 10.3390/su16104238.

J. C. N. Bittencourt, D. G. Costa, P. Portugal, and F. Vasques, “A data-driven clustering approach for assessing spatiotemporal vulnerability to urban emergencies,” Sustain. Cities Soc., vol. 108, no. November 2023, 2024, doi: 10.1016/j.scs.2024.105477.

M. Amin and A. D. Ritonga, “Diversity, Local Wisdom, and Unique Characteristics of Millennials as Capital for Innovative Learning Models: Evidence from North Sumatra, Indonesia,” Societies, vol. 14, no. 12, 2024, doi: 10.3390/soc14120260.

M. Yazdani, K. Kabirifar, and M. Haghani, “Optimising post-disaster waste collection by a deep learning-enhanced differential evolution approach,” Eng. Appl. Artif. Intell., vol. 132, no. December 2023, 2024, doi: 10.1016/j.engappai.2024.107932.

M. A. Islam, S. I. Rashid, N. U. I. Hossain, R. Fleming, and A. Sokolov, “An integrated convolutional neural network and sorting algorithm for image classification for efficient flood disaster management,” Decis. Anal. J., vol. 7, no. April, 2023, doi: 10.1016/j.dajour.2023.100225.

A. Akhyar et al., “Deep artificial intelligence applications for natural disaster management systems: A methodological review,” Ecol. Indic., vol. 163, no. May, 2024, doi: 10.1016/j.ecolind.2024.112067.

H. Tesfai et al., “Lightweight Shufflenet Based CNN for Arrhythmia Classification,” IEEE Access, vol. 10, no. August, pp. 111842–111854, 2022, doi: 10.1109/ACCESS.2022.3215665.

H. Zhang, X. Zhu, B. Li, Z. Guan, and W. Che, “LA-ShuffleNet: A Strong Convolutional Neural Network for Edge Computing Devices,” IEEE Access, vol. 11, no. October, pp. 116684–116694, 2023, doi: 10.1109/ACCESS.2023.3324713.

N. Yang and H. Tang, “Semantic segmentation of satellite images: A deep learning approach integrated with geospatial hash codes,” Remote Sens., vol. 13, no. 14, 2021, doi: 10.3390/rs13142723.

Downloads

Published

2025-11-27

How to Cite

[1]
A. Ahmad, D. Hartama, S. Solikhun, and P. Poningsih, “OPTIMIZING SHUFFLENET WITH GRIDSEARCHCV FOR GEOSPATIAL DISASTER MAPPING IN INDONESIA”, jitk, vol. 11, no. 2, pp. 443–453, Nov. 2025.

Most read articles by the same author(s)