PREDICTION MODEL OF HUMAN DEVELOPMENT INDEX (HDI) USING K-NEAREST NEIGHBOR (KNN) ENSEMBLE

Penulis

  • Fitri Nuraeni Institut Teknologi Garut
  • Siska Nuraeni Institut Teknologi Garut
  • Asri Mulyani Institut Teknologi Garut
  • Dede Kurniadi Institut Teknologi Garut

DOI:

https://doi.org/10.33480/jitk.v11i1.6598

Kata Kunci:

enseble, human development index, k-nearest neigbour, prediction

Abstrak

The Human Development Index (HDI) is an essential indicator in measuring the success of human development. Although some regions in Indonesia have experienced increased HDI, inequality between areas makes it difficult to predict future HDI values. This research aims to build an HDI prediction model using the ensemble K-nearest neighbor (KNN) method. The dataset consists of 574 data points with attributes of life expectancy, expected years of schooling, average years of education, and regional income per capita. The method used is SEMMA with z-score normalization, feature selection based on domain knowledge, and validation with 10-fold cross-validation. The results showed that the KNN Ensemble model with the Boosting (Adaboost) technique had the best performance with an average MAPE of 0.58%, which indicates that the model's predictions deviate by less than 1% from actual HDI values, which is considered highly accurate and reliable for policy planning. This model proved better than linear regression, neural networks, single KNN, and double exponential smoothing algorithms. The improved prediction accuracy of the proposed model provides local governments with a reliable tool for scenario-based development planning and policy simulation, contributing to achieving the Golden Indonesia 2045 strategic vision.

Unduhan

Data unduhan belum tersedia.

Referensi

Badan Pusat Statistik, “Indeks Pembangunan Manusia (IPM) Jawa Barat meningkat pada tahun 2022 yang mencapai 73,12,” Badan Pusat Statistik Jawa Barat.

A. A. Vladimirskaya and M. G. Kolosnitsyna, “Factors in Life Expectancy: A Cross-Country Analysis,” Vopr. Stat., vol. 30, no. 1, pp. 70–89, Feb. 2023, doi: 10.34023/2313-6383-2023-30-1-70-89.

A. Anekawati, . P., M. Rofik, and S. Hidayat, “A Spatial Error Model in Structural Equation for the Human Development Index Modeling,” Int. J. Math. Eng. Manag. Sci., vol. 9, no. 3, pp. 537–556, Jun. 2024, doi: 10.33889/IJMEMS.2024.9.3.028.

M. Goldani, “A Numerical Assessment for Predicting Human Development Index (HDI) Trends in the GCC Countries,” Nov. 2024, [Online]. Available: http://arxiv.org/abs/2411.01177

P. Akin and T. Koç, “Prediction of Human Development Index with Health Indicators Using Tree-Based Regression Models,” Adiyaman Univ. J. Sci., vol. 11, no. 2, pp. 410–420, Nov. 2021, doi: 10.37094/adyujsci.895084.

V. Georgiev, S. Hadzhikoleva, and E. Hadzhikolev, “Impact of Global Country Indicators on Life Expectancy,” Comput. Sci. Interdiscip. Res. J., vol. 1, no. 1, Aug. 2024, doi: 10.70862/CSIR.2024.0101-04.

Y. Farida, D. A. Sulistiani, and N. Ulinnuha, “Peramalan Indeks Pembangunan Manusia (IPM) Kabupaten Bojonegoro Menggunakan Metode Double Exponential Smoothing Brown,” J. Teorema Teor. dan Ris. Mat., vol. 6, no. 2, pp. 173–183, 2023, doi: http://dx.doi.org/10.25157/teorema.v6i2.5521.

N. N. Amiroh and D. Avianto, “Prediksi Indeks Pembangunan Manusia di Kabupaten Wonosobo Menggunakan Algoritma Backpropagation,” Techno.Com, vol. 22, no. 2, pp. 388–399, 2023, doi: 10.33633/tc.v22i2.7980.

A. C. Ampang, B. Eden, W. Asrul, and M. A. Nur, “Implementasi Metode Double Exponential Smoothing Untuk Prediksi Indeks Pembangunan Manusia ( IPM ) Di Kabupaten Toraja Utara,” J. Fokus Elektroda, vol. 08, no. 03, pp. 197–207, 2023.

A. Arisandi and S. Syarifuddin, “Memprediksikan Indeks Pembangunan Manusia di Wilayah Indonesia Bagian Timur Menggunakan Random Forest Classification,” J. Math. Theory Appl., vol. 5, no. 1, pp. 1–6, 2023, doi: 10.31605/jomta.v5i1.2402.

M. Jusman, N. Nur’eni, and L. Handayani, “Ensemble K-Nearest Neighbors Method to Predict Composite Stock Price Index (CSPI) in Indonesia,” J. Mat. Stat. dan Komputasi, vol. 18, no. 3, pp. 423–433, 2022, doi: 10.20956/j.v18i3.19641.

M. Fajri, S. Syafriandi, D. Vionanda, and Z. Zilrahmi, “Prediksi Harga Minyak Mentah Dunia Menggunakan Metode Ensemble k-Nearest Neighbor,” J. Pendidik. Tambusai, vol. 7, no. 2, pp. 17357–17368, 2023.

Iin, R. Supriatna, Mulyawan, and D. Rohman, “Penerapan Natural Language Processing Dalam Analisis Sentimen Cawapres 2024 Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 1109–1115, 2024, doi: 10.36040/jati.v8i1.8572.

H. Gunawan, A. Chusyairi, and M. I. Saputra, “Penerapan K-Nearest Neighbor Dengan Metode Euclidean Distance Untuk Klasifikasi Tingkat Ketebalan Cat Di PT XYZ,” J. Teknol. dan Ilmu Komput., vol. 01, no. 2, pp. 59–72, 2025, doi: 10.35134/Jutekom.v9i2.1.

J. J. Pangaribuan, A. Maulana, and R. Romindo, “UNLEASHING THE POWER OF SVM AND KNN: ENHANCED EARLY DETECTION OF HEART DISEASE,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 10, no. 2, pp. 342–351, Nov. 2024, doi: 10.33480/jitk.v10i2.5719.

L. M. Cendani and A. Wibowo, “Perbandingan Metode Ensemble Learning pada Klasifikasi Penyakit Diabetes,” J. Masy. Inform., vol. 13, no. 1, pp. 33–44, 2022, doi: 10.14710/jmasif.13.1.42912.

S. Bhattacharya, K. Kalita, R. Čep, and S. Chakraborty, “A comparative analysis on prediction performance of regression models during machining of composite materials,” Materials (Basel)., vol. 14, no. 21, p. 6689, Nov. 2021, doi: 10.3390/ma14216689.

W. Sudrajat and I. Cholid, “K-Nearest Neighbor (K-NN) Untuk Penanganan Missing Value Pada Data UMKM,” J. Rekayasa Sist. Inf. dan Teknol., vol. 1, no. 2, pp. 54–63, 2023, doi: 10.59407/jrsit.v1i2.77.

A. Nur Aziziah, A. Irma Purnamasari, and I. Ali, “Penerapan Algoritma C4.5 Untuk Prediksi Stok Bahan Minuman Di Cafe Semanis,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 292–295, 2024, doi: 10.36040/jati.v8i1.8347.

A. Husain and S. R. W. Jamaluddin, “Pemodelan Data Angka Kematian Bayi Menggunakan Regresi Robust,” SAINTEK J. Sains, Teknol. Komput., vol. 1, no. 1, pp. 1–7, 2024.

D. Cahya Putri Buani, “Penerapan Algoritma Naïve Bayes dengan Seleksi Fitur Algoritma Genetika Untuk Prediksi Gagal Jantung,” EVOLUSI J. Sains dan Manaj., vol. 9, no. 2, pp. 43–48, 2021, doi: 10.31294/evolusi.v9i2.11141.

V. Rapika Sari, E. Buulolo, and K. Kunci ABSTRAK, “Implementasi Algoritma K-Means dengan Normalisasi Sigmoidal Untuk Klastering Data Ternak Sapi,” Jikteks, vol. 02, no. 01, pp. 30–42, 2023.

I. N. Simbolon, H. D. S. . Siburian, and W. A. Manik, “Prediksi Kualitas Air Sungai Di Jakarta Menggunakan Knn Yang Dioptimalisasi Dengan Pso,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, 2024, doi: 10.23960/jitet.v12i2.4191.

A. Althnian et al., “Impact of dataset size on classification performance: An empirical evaluation in the medical domain,” Appl. Sci., vol. 11, no. 2, pp. 1–18, Jan. 2021, doi: 10.3390/app11020796.

S. Silvey and J. Liu, “Sample Size Requirements for Popular Classification Algorithms in Tabular Clinical Data: Empirical Study,” J. Med. Internet Res., vol. 26, p. e60231, Dec. 2024, doi: 10.2196/60231.

C. W. Teoh, S. B. Ho, K. S. Dollmat, and C. H. Tan, “Ensemble-Learning Techniques for Predicting Student Performance on Video-Based Learning,” Int. J. Inf. Educ. Technol., vol. 12, no. 8, pp. 741–745, 2022, doi: 10.18178/ijiet.2022.12.8.1679.

T. Bokaba, W. Doorsamy, and B. S. Paul, “A Comparative Study of Ensemble Models for Predicting Road Traffic Congestion,” Appl. Sci., vol. 12, no. 3, p. 1337, Jan. 2022, doi: 10.3390/app12031337.

A. Satoła and K. Satoła, “Performance comparison of machine learning models used for predicting subclinical mastitis in dairy cows: Bagging, boosting, stacking, and super-learner ensembles versus single machine learning models,” J. Dairy Sci., vol. 107, no. 6, pp. 3959–3972, Jun. 2024, doi: 10.3168/jds.2023-24243.

K. Abegaz and İ. Etikan, “Boosting the Performance of Artificial Intelligence-Driven Models in Predicting COVID-19 Mortality in Ethiopia,” Diagnostics, vol. 13, no. 4, p. 658, Feb. 2023, doi: 10.3390/diagnostics13040658.

O. Nooruldeen, M. R. Baker, A. M. Aleesa, A. Ghareeb, and E. H. Shaker, “Strategies for predictive power: Machine learning models in city-scale load forecasting,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 6, no. December, p. 100392, Dec. 2023, doi: 10.1016/j.prime.2023.100392.

M. S. H. Rabbi et al., “Performance evaluation of optimal ensemble learning approaches with PCA and LDA-based feature extraction for heart disease prediction,” Biomed. Signal Process. Control, vol. 101, p. 107138, Mar. 2025, doi: 10.1016/j.bspc.2024.107138.

##submission.downloads##

Diterbitkan

2025-08-15

Cara Mengutip

[1]
F. Nuraeni, S. Nuraeni, A. Mulyani, dan D. Kurniadi, “PREDICTION MODEL OF HUMAN DEVELOPMENT INDEX (HDI) USING K-NEAREST NEIGHBOR (KNN) ENSEMBLE”, jitk, vol. 11, no. 1, hlm. 8–17, Agu 2025.