PREDICTION OF HOTEL BOOKING CANCELLATION USING DEEP NEURAL NETWORK AND LOGISTIC REGRESSION ALGORITHM

  • Nugroho Adi Putro Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
  • Rendi Septian Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
  • Widiastuti Widiastuti Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
  • Mawadatul Maulidah Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
  • Hilman Ferdinandus Pardede Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri
Keywords: Bookings cancellation; deep neural network; logistic regression;

Abstract

Booking cancellation is a key aspect of hotel revenue management as it affects the room reservation system. Booking cancellation has a significant effect on revenue which has a significant impact on demand management decisions in the hotel industry. In order to reduce the cancellation effect, the hotel applies the cancellation model as the key to addressing this problem with the machine learning-based system developed. In this study, using a data collection from the Kaggle website with the name hotel-booking-demand dataset. The research objective was to see the performance of the deep neural network method which has two classification classes, namely cancel and not. Then optimized with optimizers and learning rate. And to see which attribute has the most role in determining the level of accuracy using the Logistic Regression algorithm. The results obtained are the Encoder-Decoder Layer by adamax optimizer which is higher than that of the Decoder-Encoder by adadelta optimizer. After adding the learning rate, the adamax accuracy for the encoders and encoders decreased for a learning rate of 0.001. The results of the top three ranks of each neural network after adding the learning rate show that the smaller the learning rate, the higher the accuracy, but we don't know what the optimal value for the learning rate is. By using the Logistic Regression algorithm by eliminating several attributes, the most influential level of accuracy is the state attribute and total_of_special_requests, where accuracy increases when the state attribute is removed because there are 177 variations in these attributes

Author Biographies

Nugroho Adi Putro, Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri

Mahasiswa Pascasarjana Ilmu Komputer

Rendi Septian, Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri

Mahasiswa Pascasarjana Ilmu Komputer

Mawadatul Maulidah, Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri

Mahasiswa Pascasarjana Ilmu Komputer

References

Adi Putro, N., Septian, R., Widiastuti, Maulidah, M., & Ferdinandus Pardede, H. (2021). Penelitian Dosen Yayasan.

Afrianto, M. A., & Wasesa, M. (2020). Booking Prediction Models for Peer-to-peer Accommodation Listings using Logistics Regression, Decision Tree, K-Nearest Neighbor, and Random Forest Classifiers. Journal of Information Systems Engineering and Business Intelligence, 6(2), 123. https://doi.org/10.20473/jisebi.6.2.123-132

Aggarwal, R., & Ranganathan, P. (2017). Common pitfalls in statistical analysis: Linear regression analysis. Perspectives in Clinical Research, 8(2), 100–102. https://doi.org/10.4103/2229-3485.203040

Al‑Smadi, M., Talafha, B., Al‑Ayyoub, M., & Jararweh, Y. (2018). Using long short‑term memory deep neural networks for aspect‑based-al-smadi2018.pdf. https://doi.org/10.1007/s13042-018-0799-4

ALOTAIBI, E. (2020). Application of Machine Learning in the Hotel Industry: A Critical Review. Journal of Association of Arab Universities for Tourism and Hospitality, 0(0), 0–0. https://doi.org/10.21608/jaauth.2020.38784.1060

Antonio, N., Almeida, A. de, & Nunes, L. (2017). Predicting hotel booking cancellations to decrease uncertainty and increase revenue. Tourism & Management Studies, 13(2), 25–39. https://doi.org/10.18089/tms.2017.13203

Antonio, N., de Almeida, A., & Nunes, L. (2019). Hotel booking demand datasets. ELSEVIER, 22, 41–49. https://doi.org/10.1016/j.dib.2018.11.126

Antonio, N., De Almeida, A., & Nunes, L. (2017). Predicting hotel bookings cancellation with a machine learning classification model. Proceedings - 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, 2017-Decem, 1049–1054. https://doi.org/10.1109/ICMLA.2017.00-11

Antonio, N., De Almeida, A., & Nunes, L. (2019). An automated machine learning based decision support system to predict hotel booking cancellations. Data Science Journal, 18(1), 1–20. https://doi.org/10.5334/dsj-2019-032

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–15.

Kriegeskorte, N., & Golan, T. (2019). Neural network models and deep learning – a primer for biologists. ArXiv, 1–14.

Lee, M. (2020). a Machine Learning Approach To Improving Forecasting Accuracy of Hotel Demand: a Comparative Analysis of Neural Networks and Traditional Models. Issues In Information Systems, 21(1), 12–21. https://doi.org/10.48009/1_iis_2020_12-21

Leeuwen, R. van. (2018). Cancellation Predictor for Revenue Management applied in the hospitality industry.

Peng, C. Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and reporting. Journal of Educational Research, 96(1), 3–14. https://doi.org/10.1080/00220670209598786

Putra, J. W. G. (2019). Pengenalan Konsep Pembelajaran Mesin dan Deep Learning. 1–235.

Sánchez-Medina, A. J., & C-Sánchez, E. (2020). Using machine learning and big data for efficient forecasting of hotel booking cancellations. International Journal of Hospitality Management, 89, 102546. https://doi.org/10.1016/j.ijhm.2020.102546

Urraca, R., Sanz-Garcia, A., Fernandez-Ceniceros, J., Sodupe-Ortega, E., & Martinez-de-Pison, F. J. (2015). Improving Hotel Room Demand Forecasting with a Hybrid GA-SVR Methodology Based on Skewed Data Transformation, Feature Selection and Parsimony Tuning. In E. Onieva, I. Santos, E. Osaba, H. Quintián, & E. Corchado (Eds.), Hybrid Artificial Intelligent Systems (pp. 632–643). Cham: Springer International Publishing.

Wang, J., & Duggasani, A. (2020). Forecasting hotel reservations with long short-term memory-based recurrent neural networks. International Journal of Data Science and Analytics, 9(1), 77–94. https://doi.org/10.1007/s41060-018-0162-6

World Travel Organization. (2019). International Tourism Highlights : 2019 Edition. Unwto, 1–24. https://doi.org/10.18111/9789284421152

Published
2021-03-15
How to Cite
Putro, N., Septian, R., Widiastuti, W., Maulidah, M., & Pardede, H. (2021). PREDICTION OF HOTEL BOOKING CANCELLATION USING DEEP NEURAL NETWORK AND LOGISTIC REGRESSION ALGORITHM. Jurnal Techno Nusa Mandiri, 18(1), 1-8. https://doi.org/10.33480/techno.v18i1.2056