LAND COVER CHANGE PREDICTION USING CELLULAR AUTOMATA AND MARKOV CHAIN MODELS

Authors

  • Amandus Jong Tallo Program Studi Teknik Perancangan Irigasi Dan Penanganan Pantai, Jurusan Teknik Sipil, Politeknik Negeri Kupang, Indonesia
  • Maria Gratiana Yudith Tallo rogram Studi Manajemen Perusahaan, Jurusan Adminsitrasi Bisnis, Politeknik Negeri Kupang, Indonesia
  • Antonius Leonardo Antjak Program Studi Teknik Perancangan Irigasi Dan Penanganan Pantai, Jurusan Teknik Sipil, Politeknik Negeri Kupang, Indonesia
  • Maria Imanuela Doko Program Studi Teknik Perancangan Irigasi Dan Penanganan Pantai, Jurusan Teknik Sipil, Politeknik Negeri Kupang, Indonesia
  • Maria Anita Christanti Lodang Program Studi Teknik Perancangan Irigasi Dan Penanganan Pantai, Jurusan Teknik Sipil, Politeknik Negeri Kupang, Indonesia

DOI:

https://doi.org/10.33480/techno.v20i2.7200

Keywords:

CA-Markov, Spatial Configuration, Kupang

Abstract

This research examines the impact of land use change on mobility. Spatial problems arise due to increased activity, population, and transportation in the same space, necessitating the development of modeling strategies. This aligns with SDG 11 on cities and settlements, as well as the PRN's focus on transportation innovation. The urgency of this research lies in its adaptive and sustainable spatial prediction efforts aimed at controlling future land use. This study aims to analyze land use change patterns using the Cellular Automata Markov Chain (CA-Markov) model in Kupang City until 2043. CA-Markov simulations efficiently evaluate land cover changes and movement. The quantitative research method was conducted based on spatial predictions and spatial configuration. Quantum GIS (QGIS) and GeoSOS-FLUS were used to obtain results from each stage. There are three research stages. First, identification of land cover (land use in 2018 and 2023), driving factors (distance to settlements, airports, highways, elevation, slope, slope orientation, rainfall, population density), and conservation areas. Second, standardisation of spatial data. Third, land cover prediction using GeoSOS software (five-year prediction) to identify patterns of land use change. These findings emphasize the importance of using CA-Markov-based spatial predictions as a foundation for adaptive spatial planning to control land-use conversion and maintain sustainable spatial connectivity in Kupang City until 2043.

Author Biography

Amandus Jong Tallo, Program Studi Teknik Perancangan Irigasi Dan Penanganan Pantai, Jurusan Teknik Sipil, Politeknik Negeri Kupang, Indonesia

References

A. Wadu , A. A. Tuati, M. R. S. (2020). Strategy To Reduce Traffic Jams On Piet A. Tallo Street, Kupang City. Ukarst : Universitas Kadiri Riset Teknik Sipil, 4(2), 139–150. https://doi.org/10.30737/ukarst.v3i2

Altafini Diego; Poloni, F. M. B. B. D. C. V. (2022). Markov-Chain based centralities and Space Syntax’ Angular Analysis: an initial overview and application. 13th International Space Syntax Symposium, SSS 2022, 1–22.

Angin, I. S., & Sunimbar. (2021). Analysis of Land Use Change in Kupang City, East Nusa Tenggara 2010-2018 (Case Study in Kelapa Lima, Oebobo, and Kota Lama Subdistricts). Geoedusains Journal, 2(1), 36–52.

Chen, X., He, X., & Wang, S. (2022). Simulated Validation and Prediction of Land Use under Multiple Scenarios in Daxing District, Beijing, China, Based on GeoSOS-FLUS Model. Sustainability (Switzerland), 14(18). https://doi.org/10.3390/su141811428

Durmusoglu, Z. O., & Tanriover, A. A. (2017). Modelling land use/cover change in Lake Mogan and surroundings using CA-Markov Chain Analysis. Journal of Environmental Biology, 38(5(SI)), 981–989. https://doi.org/10.22438/jeb/38/5(SI)/GM-15

Fezzai, S., Hassanshahi, G., Soltani, A., Roosta, M., Askari, S., Colaço, R., de Abreu e Silva, J., Güller, C., Toy, S., Stevens, Q., Thai, H. M. H., Sun, M., Meng, Q., Miura, S., Yoshida, M., Nakamura, F., Wongwiriya, P., Tanaka, S., Ariyoshi, R., … Yenen, Z. (2024). Improving Urban Planning Using Land Use Analysis and Traffic Network Optimization: A Case Study of Da Nang City. Frontiers in Earth Science, 13(1), 386–404. https://doi.org/10.1016/j.foar.2023.09.001

Guo, Q., Albarrán, I., Alonso-González, P. J., & Grané, A. (2025). Well-being horizons for silver and golden ages: an application of traditional and fuzzy Markov chains. Humanities and Social Sciences Communications, 12(1). https://doi.org/10.1057/s41599-025-04555-y

Han, L., Qu, Y., Liang, S., Shi, L., Zhang, M., & Jia, H. (2024). Spatiotemporal Differentiation of Land Ecological Security and Optimization Based on GeoSOS-FLUS Model: A Case Study of the Yellow River Delta in China Toward Sustainability. Land, 13(11). https://doi.org/10.3390/land13111870

Hassanshahi, G., Soltani, A., Roosta, M., & Askari, S. (2023). Walking as soft mobility: A multi-criteria GIS-based approach for prioritizing tourist routes. Frontiers of Architectural Research, 12(6), 1080–1096. https://doi.org/10.1016/j.foar.2023.09.001

Kupang, B. P. S. K. (2020). Laju Pertumbuhan Penduduk NTT 2020. Kota Kupang Dalam Angka 2022. https://kupangkota.bps.go.id/site/chartResultTab

Li, Y., Wang, N., Tong, Z., Liu, Y., An, R., & Liu, Y. (2023). The Nonlinear Influence of Street Quality on Housing Prices Based on Random Forest Model: A Case Study of Guangzhou. Tropical Geography, 43(8), 1547–1562. https://doi.org/10.13284/j.cnki.rddl.003724

Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., & Pei, F. (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168(July 2016), 94–116. https://doi.org/10.1016/j.landurbplan.2017.09.019

Luan, C., & Liu, R. (2022). A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value. International Journal of Environmental Research and Public Health, 19(24). https://doi.org/10.3390/ijerph192416484

Luwarti, Y., Kangkan, A. L., Tallo, I., & Lima, K. K. (2023). Analisis Laju Perubahan Garis Pantai Di Kecamatan Kelapa Lima Kota Kupang. 59–68.

Ntakirutimana, A., & Vansarochana, C. (2021). Assessment and prediction of land use/land cover change in the national capital of burundi using multi-temporary landsat data and cellular automata-markov chain model. Environment and Natural Resources Journal, 19(5), 413–426. https://doi.org/10.32526/ENNRJ/19/202100023

Pauleit, S., Ennos, R., & Golding, Y. (2005). Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside, UK. Landscape and Urban Planning, 71(2–4), 295–310. https://doi.org/10.1016/j.landurbplan.2004.03.009

Purnama F, M. M., Pramatana, F., Aini, Y., & Soimin, M. (2024). Analisis Tutupan Lahan Menggunakan Penginderaan Jauh ei Kecamatan Kupang Tengah, Kabupaten Kupang, Provinsi Nusa Tenggara Timur. Jurnal Kehutanan Papuasia, 10(1), 96–106.

Statistik, B. P. (BPS). (2023). Kota Kupang Dalam Angka 2023 (D. K. Ayuningtyas, Ed.; 1st ed.). BPS Kota Kupang.

Sugandhi, N., Supriatna, S., Kusratmoko, E., & Rakuasa, H. (2022a). Prediksi Perubahan Tutupan Lahan di Kecamatan Sirimau, Kota Ambon Menggunakan Celular Automata- Markov Chain. JPG (Jurnal Pendidikan Geografi), 9(2). https://doi.org/10.20527/jpg.v9i2.13880

Sugandhi, N., Supriatna, S., Kusratmoko, E., & Rakuasa, H. (2022b). Prediksi Perubahan Tutupan Lahan di Kecamatan Sirimau, Kota Ambon Menggunakan Celular Automata- Markov Chain. JPG (Jurnal Pendidikan Geografi), 9(2). https://doi.org/10.20527/jpg.v9i2.13880

Supriatna, Mukhtar, M. K., Wardani, K. K., Hashilah, F., & Manessa, M. D. M. (2022a). CA-Markov Chain Model-based Predictions of Land Cover: A Case Study of Banjarmasin City. Indonesian Journal of Geography, 54(3), 365–372. https://doi.org/10.22146/IJG.71721

Supriatna, Mukhtar, M. K., Wardani, K. K., Hashilah, F., & Manessa, M. D. M. (2022b). CA-Markov Chain Model-based Predictions of Land Cover: A Case Study of Banjarmasin City. Indonesian Journal of Geography, 54(3), 365–372. https://doi.org/10.22146/IJG.71721

Tahir, Z., Haseeb, M., Mahmood, S. A., Batool, S., Abdullah-Al-Wadud, M., Ullah, S., & Tariq, A. (2025). Predicting land use and land cover changes for sustainable land management using CA-Markov modelling and GIS techniques. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-87796-w

Tallo, A. J., Alraouf, A. A., & Wibowo, C. A. (2024). Multi-scenario location-allocation in decision-making for improving educational facility services in Kupang City. ARTEKS : Jurnal Teknik Arsitektur, 9(1), 121–128. https://doi.org/10.30822/arteks.v9i1.3264

Tallo, A. J., Arianti, S. P., Abdillah, F., Bahri, A. S., Heryanto, S., Fassa, F., Prihandrijanti, M., & Anshory, B. J. (2018). Typology Analysis and Leading Sector of East Nusa Tenggara Province in 2017. Journal of Physics: Conference Series, 1114(1). https://doi.org/10.1088/1742-6596/1114/1/012122

Villamor, G. B., Akiefnawati, R., Van Noordwijk, M., Desrianti, F., & Pradhan, U. (2015). Land use change and shifts in gender roles in central Sumatra, Indonesia. International Forestry Review, 17(4), 61–75. https://doi.org/10.1505/146554815816002211

Wang, W., Xu, Z., Sun, D., & Lan, T. (2021). Spatial-optimization-of-megacity-fire-stations-based-on-multisource-geospatial-data-A-case-study-in-beijingISPRS-International-Journal-of-GeoInformation.pdf. International Journal of Geo-Information, 10(282), 1–19.

Downloads

Published

2025-09-25

How to Cite

Tallo, A. J., Tallo , M. G. Y. ., Antjak, A. L. ., Doko, M. I. ., & Lodang, M. A. C. . (2025). LAND COVER CHANGE PREDICTION USING CELLULAR AUTOMATA AND MARKOV CHAIN MODELS. Jurnal Techno Nusa Mandiri, 20(2), 135–142. https://doi.org/10.33480/techno.v20i2.7200