ANALISIS SENTIMEN APLIKASI TIKTOK SHOP SELLER CENTER MENGGUNAKAN NAIVE BAYES, SVM DAN LOGISTIC REGRESSION
DOI:
https://doi.org/10.33480/inti.v20i1.6851Kata Kunci:
algorithm , logistic regression, sentiment analysis , support vector machine, TikTok ShopAbstrak
The rapid growth of e-commerce has driven the emergence of new platforms such as TikTok Shop Seller Center, which is now integrated with Tokopedia. Increasing competition among digital platforms has made service quality and user experience key success factors. In this context, user reviews and feedback serve as crucial data sources that reflect satisfaction, complaints, and expectations toward the application. However, the large and diverse volume of reviews renders manual analysis inefficient. Therefore, an automated approach such as sentiment analysis is required to classify user opinions quickly and accurately. This study aims to perform sentiment analysis on TikTok Shop Seller Center user reviews using Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression algorithms to determine the best-performing model. The dataset was obtained from the Kaggle platform and underwent preprocessing, including case folding, tokenization, stemming, and TF-IDF weighting. Model evaluation was conducted using confusion matrix and ROC curve, along with performance metrics such as accuracy, precision, recall, and F1-score. The results show that the SVM algorithm outperformed Naïve Bayes and Logistic Regression, achieving 93.75% accuracy, 93.78% precision, 95.65% recall, 94.70% F1-score, and an AUC of 0.98, categorized as Excellent Classification. Thus, SVM proved to be the most effective algorithm for classifying user review sentiments on TikTok Shop Seller Center.
Unduhan
Referensi
Apriliani, N., Suarna, N., & Prihartono, W. (2023). Analisis Sentimen Review Penggunaan Tiktok Melalui Pendekatan Algoritma Naïve Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3725–3731. https://doi.org/10.36040/jati.v7i6.8299
Dewi, E., Mulyani, S., Hidayatuloh Taopik, A., & Agustiawan, T. (2020). Analisis Sentimen Ulasan Produk Pada Top Brand Produk Masker Di Tokopedia Menggunakan Naive Bayes. Jurnal Eksplora Informatika, 1(1), 32–42.
Ernawati, A., Sari, A. O., Sofyan, S. N., Iqbal, M., & Wijaya, R. F. W. (2023). Implementasi Algoritma Naïve Bayes dalam Menganalisis Sentimen Review Pengguna Tokopedia pada Produk Kesehatan. Bulletin of Information Technology (BIT), 4(4), 533–543. https://doi.org/10.47065/bit.v4i4.1090
Hidayati, A. R., Fitrani, A. S., Rosid, M. A., Sains, F., & Teknologi, D. (2023). Analisa Sentimen Pemilu 2019 Pada Judul Berita Online Menggunakan Metode Logistic Regression. Kesatria : Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen), 4(2), 298–305. http://www.pkm.tunasbangsa.ac.id/index.php/kesatria/article/view/164
Idris, I. S. K., Mustofa, Y. A., & Salihi, I. A. (2023). Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM). Jambura Journal of Electrical and Electronics Engineering, 5(1), 32–35. https://doi.org/10.37905/jjeee.v5i1.16830
Indriyani, F. A., Fauzi, A., & Faisal, S. (2023). Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine. TEKNOSAINS : Jurnal Sains, Teknologi Dan Informatika, 10(2), 176–184. https://doi.org/10.37373/tekno.v10i2.419
Kurnia, Z., Zakiyyah, A. M., Fitriyah, N. Q., & Susetyo, A. M. (2024). Analisis Sentimen Masyarakat Berdasarkan Komentar Kerja Sama Tiktok Shop dan Tokopedia di Instagram Menggunakan Metode Naïve Bayes Classifier. Jurnal Penelitian Teknologi Informasi Dan Sains, 2(2), 115–125. https://doi.org/10.54066/jptis.v2i2.1978
Mirandini, N. A., Kuswari, N. I., Revinta, S. N., & Putri, Y. S. F. (2024). Opini Publik Terhadap Kebijakan Penutupan Tik Tok Shop (Studi Literatur Dan Analisis Sentimen. Jurnal Ilmiah Wahana Pendidikan, 10(16), 556–557.
Novantika, A., & Sugiman. (2022). Analisis sentimen ulasan pengguna aplikasi video conference google meet menggunakan metode svm dan logistic regression. PRISMA, Prosiding Seminar Nasional Matematika, 5, 808–813. https://journal.unnes.ac.id/sju/index.php/prisma/
Nurian, A., Ma’arif, M. S., Amalia, I. N., & Rozikin, C. (2024). Analisis Sentimen Pengguna Aplikasi Shopee Pada Situs Google Play Menggunakan Naive Bayes Classifier. Jurnal Informatika Dan Teknik Elektro Terapan, 12(1). https://doi.org/10.23960/jitet.v12i1.3631
Praneswara, A. O., & Cahyono, N. (2023). Analisis Sentimen Ulasan Aplikasi TikTok Shop Seller Center di Google Playstore Menggunakan Algoritma Naive Bayes. Indonesian Journal of Computer Science, 12(6), 3925–3940. https://doi.org/10.33022/ijcs.v12i6.3473
Ramadhan, B. Z., Riza, I., & Maulana, I. (2022). Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Dengan Menggunakan Algoritma Naïve Bayes. Journal of Applied Informatics and Computing (JAIC), 6(2), 220–225.
Sa’adah, A. N., Rosma, A., & Aulia, D. (2022). Persepsi Generasi Z Terhadap Fitur Tiktok Shop Pada Aplikasi Tiktok. Transekonomika: Akuntansi, Bisnis Dan Keuangan, 2(5), 131–140. https://doi.org/10.55047/transekonomika.v2i5.176
Sativa, A. N., Rizky, A., Putri, I., & Putri, J. A. (2024). Analisis Sentimen Twitter Ibu Kota Negara Nusantara Menggunakan Algoritma Naive Bayes , Logistic Regression dan K-Nearest Neighbors. 3(2), 34–40.
Ulya, S., Ridwan, A., Cholid Wahyudin, W., & Hana, F. M. (2022). Text Mining Sentimen Analisis Pengguna Aplikasi Marketplace Tokopedia Berdasar Rating dan Komentar Pada Google Play Store. Jurnal Bisnis Digital Dan Sistem Informasi, 3(2), 33–40. https://ejr.umku.ac.id/index.php/BIDISFO/article/view/1799
##submission.downloads##
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Elly Indrayuni, Acmad Nurhadi

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.