Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
Natural disasters trigger people, especially Twitter users to provide information or opinions in the form of tweets. The Tweet can be an expression of sadness, concern, or complaint. Processing of data from these tweets will create trends that can be used for information needs such as education, economics, and others. Natural disasters are events that threaten human life caused by nature, including in the form of earthquakes. The method used is the Support Vector Machine and Naive Bayes from the tweet. The data collected is filtered from tweets by deleting duplicate data. In calculating the Natural Disaster sentiment analysis using a comparison of the Support Vector Machine and the Naive Bayes algorithm, the difference in accuracy is 3.07% where the results of the Support Vector Machine are greater than Naive Bayes. The purpose of this research is to analyze sentiment for the distribution of disaster aid that does not flow information due to information & coordination in the field. so as to provide information on the location of natural disasters, natural disaster management, and its presentation to victims that can be shared evenly in an efficient time due to information and natural management so that the distribution of aid is hampered
Ilmu Komputer, STMIK Nusa Mandiri
Teknik Informatika, STMIK Nusa Mandiri
Ilmu Komputer, STMIK Nusa Mandiri
Amalia, R., Bijaksana, M. A., & Darmantoro, D. (n.d.). A Framework for Sentiment Analysis Implementation of Indonesian Language Tweet on Twitter A Framework for Sentiment Analysis Implementation of Indonesian Language Tweet on Twitter. https://doi.org/10.1088/1742-6596/755/1/011001
Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. 2(1), 32–41.
D, I. A. P. (n.d.). Text Mining dan Knowledge Discovery. 1–9.
Erni Ernawati. (2019). Ermawati, Algoritma Klasifikasi C4.5 Berbasis Particle Swarm Optimization Untuk Prediksi Penerima Bantuan Pangan Non Tunai 513. 8(September), 513–528.
Gallardo, R. (2020). Bringing Communities into the Digital Age. 51(4), 233–241. https://doi.org/10.1177/0160323X20926696
Kristiyanti Dinar Ajeng, normah, H. A. (2019). Prediction of Indonesia Presidential Election Results for the 2019-2024 Period Using Twitter Sentiment Analysis. 36–42.
Kurikulum, K. K., Pamungkas, D. S., Setiyanto, N. A., & Dolphina, E. (2015). ANALISIS SENTIMENT PADA SOSIAL MEDIA TWITTER MENGGUNAKAN NAIVE BAYES CLASSIFIER TERHADAP. 14(4), 299–314.
Luqyana, W. A., Cholissodin, I., & Perdana, R. S. (2018). Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine. 2(11), 4704–4713.
Nurajizah, S. (2015). Sistem Informasi Perpustakaan Berbasis Web Dengan Metode Prototype: Studi Kasus Sekolah Islam Gema Nurani Bekasi. Prosiding SNIT 2015, 214–219.
Nurhuda, F., & Sihwi, S. W. (2014). Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier. 2(2).
Prasetyowati, E. (2017). DATA MINING (Moh.Afandi, ed.). Duta Media.
Ramadhan, M. I. (n.d.). PENERAPAN DATA MINING UNTUK ANALISIS DATA BENCANA MILIK BNPB MENGGUNAKAN ALGORITMA. 22(1).
Rofiqoh, U., Perdana, R. S., & Fauzi, M. A. (2017). Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexicon Based Features. 1(12), 1725–1732.
Rokhman Fathur, S. (2020). LINGUISTIK DISRUPTIF : Pendekatan Kekinian Memahami Perkembangan Bahasa (1st ed.; F. Azzahrah, ed.). Jakarta: PT. Bumi Aksara.
Saputra, N., Bharata, T., & Erna, A. (2015). Jurnal Dinamika Informatika Volume 5, Nomor 1, November 2015. 5(November).
Saputra, S. A., Rosiyadi, D., Gata, W., & Husain, S. M. (2019). Sentiment Analysis Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 377–382. https://doi.org/10.29207/resti.v3i3.1118
Son, Y., Kim, H., Kim, E., Choi, S., & Candidate, D. (2010). Application of Support Vector Machine for Predic- tion of Medication Adherence in Heart Failure Pa- tients. 16(4), 253–259. https://doi.org/10.4258/hir.2010.16.4.253
Copyright (c) 2020 Ainun Zumarniansyah, Rangga Febrianto, Normah Normah, Windu Gata
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.