Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.
In the process, data mining will extract valuable information by analyzing the existence of specific patterns or relationships from extensive data. One of the concerns of the new disease outbreak caused by the coronavirus (2019-nCoV) or commonly referred to as Covid-19, was officially designated as a global pandemic by the World Health Organization (WFO) on March 11, 2020. To break the transmission of Covid-19, the government carried out vaccinations for the Indonesian population. In the first period, the vaccination target will be for health workers with a total of 1.3 million people, public officers with 17.4 million people, and 21.5 million people. 19. The Data processed is only text data from Twitter application reviews that use Indonesian. Using the polarity of the Sentiment class Textblob, the sentiment class is positive, negative, and neutral. The data mining used is SVM, Naive Bayes, and Logistic Regression. As for this research in the form of knowledge of sentiment in the community towards vaccination activities, the results of this study get 43% positive sentiment, 40.8% negative, and 16.2% negative by testing the classification algorithm, Logistic Regression accuracy of 87%, SVM 86, 4%, and Naive Bayes, 40% of these results, can be seen that the Indonesian people have a positive sentiment towards the covid-19 vaccine.
Ahuja, S., & Dubey, G. (2017). Clustering and Sentiment Analysis on Twitter Data. 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), 1–5(1), 1–5. https://doi.org/10.1109/TEL-NET.2017.8343568
Dewi, S. A. E. (2021). Komunikasi Publik Terkait Vaksinasi Covid 19. Health Care : Jurnal Kesehatan, 10(1), 162–167. https://doi.org/10.36763/healthcare.v10i1.119
Ian H. Witten, Eibe Frank, Mark A. Hall, C. J. P. (2019). Data Mining Practical Machine Learning Tools and Techniques. (C. Kent, Ed.). Todd Green. Retrieved from https://www.sciencedirect.com/book/9780123748560/data-mining-practical-machine-learning-tools-and-techniques#book-description
Ilmiah, P., Afshoh, F., Informatika, P. S., Komunikasi, F., Informatika, D. A. N., & Surakarta, U. M. (2018). Analisa Sentimen Menggunakan Naïve Bayes. Jurnal Sains Dan Teknologi, 10(2), 2. https://doi.org/https://doi.org/10.32764/saintekbu.v10i2.190
K-means, M. A. (2017). Text Mining Untuk Analisis Sentimen Review Film. Techno.COM, 16(1), 1–8. https://doi.org/10.33633/tc.v16i1.1263
Keahlian, K., & Data, R. (2021). Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial, 1(1), 10–12. https://doi.org/https://doi.org/10.20895/dinda.v1i1.180
Kurniawan, S., Gata, W., Puspitawati, D. A., Parthama, I. K. S., Setiawan, H., S, A., & Hartini. (2019). Text Mining Pre-Processing Using Gata Framework and RapidMiner for Indonesian Sentiment Analysis Text Mining Pre-Processing Using Gata Framework and RapidMiner for Indonesian Sentiment Analysis. IOP Conference Series: Materials Science and Engineering, 385(1), 1. https://doi.org/10.1088/1757-899X/835/1/012057
Makmun, A., & Hazhiyah, S. F. (2020). Kajian Pustaka Tinjauan Terkait Pengembangan Vaksin Covid – 19 Fakultas Kedokteran Universitas Muslim Indonesia. Molucca Media, 13(oktober), 2. https://doi.org/https://doi.org/10.30598/molmed.2020.v13.i2.52
Mart, F., Contreras-ochando, L., & Lachiche, N. (2019). CRISP-DM Twenty Years Later : From Data Mining Processes to Data Science Trajectories. IEEE Xplore, 33(8), 1. https://doi.org/10.1109/TKDE.2019.2962680
Muttaqien, D. D., Tibyani, T., & Hartono, P. P. (2022). Implementasi Support Vector Machine pada Analisis Sentimen mengenai Bantuan Sosial di Era Pandemi Covid-19 pada Pengguna Twitter. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 10(1), 6. https://doi.org/http://j - ptiik.ub.ac.id 2548 - 964X
Nur Khormarudin, A. (2016). Teknik Data Mining: Algoritma K-Means Clustering. Jurnal Ilmu Komputer, 1(1), 1–12. Retrieved from https://ilmukomputer.org/category/datamining/
Primadhita, Y., & Budiningsih, S. (2020). Analisis Perkembangan Usaha Mikro Kecil Dan Menengah Dengan Model Vector Auto Regression. Jurnal Manajemen Kewirausahaan, 17(1), 1. https://doi.org/10.33370/jmk.v17i1.396
Rachman, F. F., & Pramana, S. (2020). Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter, 8(2), 100–109. https://doi.org/https://doi.org/10.47007/inohim.v8i2.223
Susilo Daniel, P. D. T., & Navarro, J. C. (2021). Performance of Indonesian Ministry of Health in Overcoming Hoax About Vaccination Amid the Covid-19 Pandemic on Social Media. NYIMAK Journal of Communication, 5(1), 1–66. https://doi.org/https://2580-3808
Yolanda, I. (2021). Urgensi Pengaturan Trading In Influence Sebagai Sarana Pembangunan Masyarakat. DiH: Jurnal Ilmu Hukum, 6534(17), 1. https://doi.org/https://doi.org/10.30996/dih.v17i1.4132
Copyright (c) 2022 Nurmalasari Nurmalasari, Widi Astuti, Windu Gata; Ida Zuniarti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
An author who publishes in the Pilar Nusa Mandiri: Journal of Computing and Information System agrees to the following terms:
Diterbitkan Oleh:
Lembaga Penelitian Pengabdian Masyarakat Universitas Nusa Mandiri
Creation is distributed below Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.