DETEKSI KARAKTER HURUF ARAB DENGAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK
Abstract
Dalam dunia yang serba digital bukan berarti tidak ada lagi tulisan tangan. Contohnya seperti membaca cek di bank masih harus menerima input berupa tulisan tangan. Masalahnya banyak aplikasi OCR belum bisa memfasilitasi semua bahasa salah satunya adalah bahasa arab. Karenanya diperlukan aplikasi yang dapat mengidentifikasi huruf hijaiyah tulisan tangan bahasa arab. Tujuan dari penelitian ini adalah mengembangkan aplikasi artificial intelligent untuk mendeteksi karakter huruf arab dengan metode Convolutional Neural Network. Hasil penelitian ini dapat dimanfaatkan sebagai dasar pengembangan lebih lanjut aplikasi OCR dengan banyak bahasa
Downloads
References
Akil, I., & Chaidir, I. (2020). Laporan Akhir Penelitian: Deteksi Karakter Huruf Arab Dengan Menggunakan Convolutional Neural Network. Jakarta.
Aqab, S., & Tariq, M. U. (2020). Handwriting recognition using artificial intelligence neural network and image processing. International Journal of Advanced Computer Science and Applications, 11(7), 137–146. https://doi.org/10.14569/IJACSA.2020.0110719
Bi, X., Smith, B. A., & Zhai, S. (2015). Multilingual Touchscreen Keyboard Design and Optimization CONTENTS 1. INTRODUCTION 2. BACKGROUND AND RELATED WORK 2.1 Input Methods for Different Languages. 2.2. QWERTY layout 2.3. Optimization Objectives 2.4. Optimization Scope 2.5. Optimization Methods . 1–34.
Brownlee, J. (2019). A Gentle Introduction to the Rectified Linear Unit (ReLU). Retrieved from Machine Learning Mastery website: https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
Dickson, B. (2020). What are convolutional neural networks (CNN)? Retrieved from bdtechtalks.com website: https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/
El Sawy, A., Loey, M., & El Bakry, H. (2019). Arabic Handwritten Characters Recognition using Convolutional Neural Network. 2019 10th International Conference on Information and Communication Systems, ICICS 2019, 5, 147–151. https://doi.org/10.1109/IACS.2019.8809122
Irina, G. (2011). Globalization and the World Crisis. Researchgate, pp. 135–166.
Jaiem, F. K., Kanoun, S., Khemakhem, M., El Abed, H., & Kardoun, J. (2013). Database for Arabic printed text recognition research. Image Analysis and Processing – ICIAP 2013, 8156 LNCS(PART 1), 251–259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41181-6_26
Klassen, T. (2001). Towards Neural Network Recognition Of Handwritten Arabic Letters (Dalhousie University). Dalhousie University. Retrieved from https://web.cs.dal.ca/~mheywood/Reports/TKlassen.pdf
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM. https://doi.org/10.1201/9781420010749
LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1998). Object Recognition with Gradient-Based Learning. AT&T Shannon Lab, (0).
LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object Recognition with Gradient-Based Learning. In D. A. Forsyth, J. L. Mundy, V. di Gesu, & R. Cipolla (Eds.), Shape, Contour and Grouping in Computer Vision (pp. 319–345). Berlin: Springer, Berlin, Heidelberg.
Novet, J. (2014). Skymind launches with open-source, plug-and-play deep learning features for your app. Retrieved from venturebeat.com website: https://venturebeat.com/2014/06/02/skymind-launches-with-open-source-plug-and-play-deep-learning-features-for-your-app/
Prabhu, P. (2018). Understanding of Convolutional Neural Network (CNN) — Deep Learning. 279–291. https://doi.org/10.1142/9789811201233_0014
Rahaman, M. A., Mahin, M., Ali, M. H., & Hasanuzzaman, M. (2019). BHCDR: Real-Time Bangla Handwritten Characters and Digits Recognition using Adopted Convolutional Neural Network. 1st International Conference on Advances in Science, Engineering and Robotics Technology 2019, ICASERT 2019, (April). https://doi.org/10.1109/ICASERT.2019.8934476
Scherer, D., Andreas, M., & Behnke, S. (2010). Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In K. Diamantaras, W. Duch, & L. S. Iliadis (Eds.), Artificial Neural Networks – ICANN 2010 (pp. 92–101). Thessaloniki: Springer, Berlin, Heidelberg. Retrieved from https://link.springer.com/chapter/10.1007/978-3-642-15825-4_10
Sharma, P. (2020). Keras Dense Layer Explained for Beginners. Retrieved from machinelearningknowledge.ai/ website: https://machinelearningknowledge.ai/keras-dense-layer-explained-for-beginners/
Copyright (c) 2021 Ibnu Akil, Indra Chaidir
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.