PREDIKSI HARGA SAHAM TWITTER DENGAN LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORK
Abstract
Abstract— Today the trading business has become a trend to get money easily without having to work hard as long as you have capital. To get maximum results and avoid losses, it is necessary to have expertise in predicting the ups and downs of the stock market value. The purpose of this research is to utilize machine learning technology to predict the fluctuation of stock value by using the Long Short-Term Memory RNN model. From the results of this study, it was found that LSTM+RNN is suitable for use in single-step models.
Keywords: stock price, machine learning, recurrent neural network, lstm
Abstrak—Dewasa ini bisnis trading menjadi suatu trend untuk mendapatkan uang dengan mudah tanpa harus bekerja keras asalkan memiliki modal. Untuk mendapatkah hasil yang maksimal dan menghindari kerugian maka diperlukan keahlian di dalam memprediksi naik turunya nilai bursa saham. Tujuan dari penelitian ini adalah memanfaatkan teknologi machine learning untuk memprediksi naik turunya nilai saham dengan menggunakan model Long Short-Term Memory RNN. Dari hasil penelitian ini didapatkan bahwa LSTM+RNN cocok untuk digunakan pada model single-step.
Kata kunci: harga saham, machine learning, recurrent neural network, lstm
Downloads
Copyright (c) 2022 Ibnu Akil, Indra Chaidir
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.