FACE DETECTION PADA GAMBAR DENGAN MENGGUNAKAN OPENCV HAAR CASCADE
Abstract
Abstract—OpenCV has more than 2500 optimized algorithms, which includes a comprehensive set of both classic and state-of-the-art computer vision and machine learning algorithms. It has been proven by software companies, that is why the researcher will use it for face detection application with Java programming langguage. The purpose of this paper is trying to implement machine learning library OpenCV with Haarcascade algorithm to detect face from an image and to find the weaknesess of haarcascade algorithm. Haar cascade is proven still relliable to detect face.
Abstrak— OpenCV memiliki lebih dari 2500 algoritma yang sudah dioptimisasi untuk digunakan dalam computer vision dan pembelajaran mesin. Karena keberhasilannya yang sudah dibuktikan oleh banyak perusahaan perangkat lunak, maka peneliti akan menggunakannya untuk aplikasi face detection dengan menggunakan bahasa pemrograman Java. Tujuan dari artikel ini adalah untuk mencoba menerapkan library pembelajaran mesin OpenCV algoritma Haar cascade untuk mendeteksi wajah pada sebuah gambar dan untuk mencari kelemahannya. Haar cascade telah terbukti masih cukup handal dalam mendeteksi wajah.
Downloads
References
Behera, G. S. (2020). Face Detection with Haar Cascade. Towardsdatascience.Com. https://towardsdatascience.com/face-detection-with-haar-cascade-727f68dafd08
Lia Farokhah. (2021). Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan DLib CNN. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 609–614. https://doi.org/10.29207/resti.v5i3.3125
NEC. (2022). Face Detection vs Facial Recognition – what’s the difference? Nec Publication & Media. https://www.nec.co.nz/market-leadership/publications-media/face-detection-vs-facial-recognition-whats-the-difference/
PavanreddyA, & Senthil Kumar R. (2022). Human Emotions Recognition Using Softmax Classifier and Predict the Error Level Using OpenCV Library. 0. https://doi.org/10.3233/apc220090
Shubham Mishra, Mrs. Versha Verma, Dr. Nikhat Akhtar, Shivam Chaturvedi, & Dr. Yusuf Perwej. (2022). An Intelligent Motion Detection Using OpenCV. International Journal of Scientific Research in Science, Engineering and Technology, March, 51–63. https://doi.org/10.32628/ijsrset22925
TH. Hasan, R., & Bibo Sallow, A. (2021). Face Detection and Recognition Using OpenCV. Journal of Soft Computing and Data Mining, 2(2). https://doi.org/10.30880/jscdm.2021.02.02.008
Toderici, G., Evangelopoulos, G., Fang, T., Theoharis, T., & Kakadiaris, I. A. (2014). UHDB11 database for 3D-2D face recognition. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8333 LNCS(February 2014), 73–86. https://doi.org/10.1007/978-3-642-53842-1_7
Viola, P., & Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of Simple Features. Accepted Conference on Computer Vision and Pattern Recognition 2001.
Zhang, G., & Chen, J. (2017). Advances in Video Face Recognition.
Copyright (c) 2023 Ibnu Akil
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Penulis yang menerbitkan jurnal ini menyetujui ketentuan berikut:
1. Penulis memegang hak cipta dan memberikan hak jurnal mengenai publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License. yang memungkinkan orang lain untuk berbagi karya dengan pengakuan atas karya penulis dan publikasi awal pada jurnal.
2. Penulis dapat memasukkan pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan (misalnya, mengirimkannya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya pada Jurnal.
3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, dalam penyimpanan institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat menghasilkan pertukaran yang produktif, serta kutipan dari karya yang diterbitkan sebelumnya.