DATA MINING USING RANDOM FOREST, NAÏVE BAYES, AND ADABOOST MODELS FOR PREDICTION AND CLASSIFICATION OF BENIGN AND MALIGNANT BREAST CANCER

  • Bahtiar Imran (1*) Universitas Teknologi Mataram
  • Hambali Hambali (2) Universitas Teknologi Mataram
  • Ahmad Subki (3) Universitas Teknologi Mataram
  • Zaeniah Zaeniah (4) Universitas Teknologi Mataram
  • Ahmad Yani (5) Universitas Teknologi Mataram
  • Muhammad Rijal Alfian (6) Universitas Teknologi Mataram

  • (*) Corresponding Author
Keywords: prediction, data mining, classification, breast cancer, model classification

Abstract

This study predicts and classifies benign and malignant breast cancer using 3 classification models. The method used in this research is Random Forest, Naïve Bayes and AdaBoost. The prediction results get Random Forest = 100%, Naïve Bayes = 80% and AdaBoost = 80%. Results using Test and Score with Number of Folds 2, 5 and 10. Number of Folds 2 Random Forest model Accuracy = 95%, Precision = 95% and Recall = 95%, Naïve Bayes Accuracy = 93%, Precision = 93% and Recall 93%, AdaBoost Accuracy = 90%, Precision = 90% and Recall = 90%. With Number of Folds 5 with Random Forest = 96%, Precision = 96% and Recall 96%. Naïve Bayes Accuracy value = 94%, Precision = 94% and Recall = 94%, AdaBoost Accuracy value = 93%, Precision = 93% and Recall = 93%. With Number of Folds 10 Random Forest model = 96%, Precision = 96% and Recall 96%. Naïve Bayes Accuracy value = 94%, Precision = 94% and Recall = 94%, AdaBoost Accuracy value = 92%, Precision = 92% and Recall = 92%. Of the 3 models used, Random Forest got the best classification results compared to the others.

Downloads

Download data is not yet available.

References

Abd-Elrazek, M. A., Othman, A. A., Abd Elaziz, M. H., & Abd-Elwhab, M. N. (2018). Intelligent Prediction of Breast Cancer: A Comparative Study. Egyptian Computer Science Journal, 42(3), 29–43.

Anjum, A. (2019). Role of Machine Learning in Diagnosis of Breast Cancer. International Journal of Innovative Science and Research Technology, 4(5), 280–284.

Ayyoubzadeh, S. M., Almasizand, A., & ... (2021). Early Breast Cancer Prediction Using Dermatoglyphics: Data Mining Pilot Study in a General Hospital in Iran. Health Education and Health Promotion, 9(3), 279–285.

Bissanum, R., Chaichulee, S., Kamolphiwong, R., Navakanitworakul, R., & Kanokwiroon, K. (2021). Molecular classification models for triple negative breast cancer subtype using machine learning. Journal of Personalized Medicine, 11(9). https://doi.org/10.3390/jpm11090881

BV, E. (2019). Application of Data Mining Techniques to Predict Breast Cancer. Procedia Computer Science.

Chaurasia, V., Pal, S., & Tiwari, B. B. (2018). Prediction of benign and malignant breast cancer using data mining techniques. Journal of Algorithms and Computational Technology, 12(2), 119–126. https://doi.org/10.1177/1748301818756225

Ganggayah, M. D., Taib, N. A., Har, Y. C., Lio, P., & Dhillon, S. K. (2019). Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Medical Informatics and Decision Making, 19(1), 1–17. https://doi.org/10.1186/s12911-019-0801-4

Gupta, A., & Kaushik, B. N. (2018). Feature selection from biological database for breast cancer prediction and detection using machine learning classifier. Journal of Artificial Intelligence, 11(2), 55–64. https://doi.org/10.3923/jai.2018.55.64

Jean Sunny, Nikita Rane, Rucha Kanade, & Sulochana Devi. (2020). Breast Cancer Classification and Prediction using Machine Learning. International Journal of Engineering Research And, V9(02), 576–580. https://doi.org/10.17577/ijertv9is020280

Kaur, E. R., & Chopra, V. (2015). Implementing Adaboost and Enhanced Adaboost Algorithm in Web Mining. International Journal of Adanced Research in Computer and Communication Engineering, 4(7), 306–311. https://doi.org/10.17148/IJARCCE.2015.4771

Khan, I., Gandhi, A., Parmar, N., & Garg, B. (2020). Breast cancer prediction using data mining. International Journal of Scientific Research and Engineering Development, 3(2), 978–980.

Kharya, S., & Soni, S. (2016). Weighted Naive Bayes Classifier: A Predictive Model for Breast Cancer Detection. International Journal of Computer Applications, 133(9), 32–37. https://doi.org/10.5120/ijca2016908023

Kodati, S., & Vivekanandam, R. (2018). Analysis of Heart Disease using in Data Mining Tools Orange and Weka. Global Journal of Computer Science and Technology: C Software & Data Engineering, 18(1), 16–22.

Krishna, M. H., & Rao, D. K. N. (2018). PREDICTION OF BREAST CANCER USING MACHINE LEARNING TECHNIQUES. International Journal of Management, Technology And Engineering, 8(12), 150–153. https://doi.org/10.2174/2213275912666190617160834

Kukasvadiya, M. S., Nidhi, D., & Divecha, H. (2017). Analysis of Data Using Data Mining tool Orange. International Journal of Engineering Development and Research, 5(2), 1836–1840.

Kumari, G. T. P., & Rani, M. U. (2017). A Study of AdaBoost and Bagging Approaches on Student Dataset. Journal of Advanced Engineering and Science, 2(2), 375–380.

Li, J., Zhou, Z., Dong, J., Fu, Y., Li, Y., Luan, Z., & Peng, X. (2021). Predicting breast cancer 5-year survival using machine learning: A systematic review. PLoS ONE, 16(4 April), 1–23. https://doi.org/10.1371/journal.pone.0250370

Manimannan, G., Priya, R. L., & Kumar, C. A. (2019). Application of Orange Data Mining Approach of Argiculture Productivity Index Performance in Tamilnadu. International Journal of Scientific and Innovative Mathematical Research, 7(8), 8–16. https://doi.org/10.20431/2347-3142.0708003

Masood, H. (2021). Breast Cancer Detection Using Machine Learning Algorithms. International Research Journal of Engineering and Technology (IRJET), 8(2), 738–747. https://doi.org/10.1007/978-981-16-6309-3_34

More, A., Mhatre, S., Kamble, V., Patil, V., & Bhairnallykar, S. (2022). Breast Cancer Prediction Using Classification Techniques of Machine Learning. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10(1). https://doi.org/10.26483/ijarcs.v10i5.6464

Nindrea, R. D., Aryandono, T., Lazuardi, L., & Dwiprahasto, I. (2018). Diagnostic accuracy of different machine learning algorithms for breast cancer risk calculation: A meta-analysis. Asian Pacific Journal of Cancer Prevention, 19(7), 1747–1752. https://doi.org/10.22034/APJCP.2018.19.7.1747

Nitasha. (2019). Review on Breast Cancer Prediction Using Data Mining Algorithms. International Journal of Computer Science Trends and Technology (IJCST), 7(4), 42–45.

Octaviani, T. L., & Rustam, Z. (2019). Random forest for breast cancer prediction. AIP Conference Proceedings, 2168(November). https://doi.org/10.1063/1.5132477

Perveen, S., Shahbaz, M., Guergachi, A., & Keshavjee, K. (2016). Performance Analysis of Data Mining Classification Techniques to Predict Diabetes. Procedia Computer Science, 82(March), 115–121. https://doi.org/10.1016/j.procs.2016.04.016

Rajendran, K., Jayabalan, M., & Thiruchelvam, V. (2020). Predicting breast cancer via supervised machine learning methods on class imbalanced data. International Journal of Advanced Computer Science and Applications, 11(8), 54–63. https://doi.org/10.14569/IJACSA.2020.0110808

Rawal, R. (2020). BREAST CANCER PREDICTION USING MACHINE LEARNING. Journal of Emerging Technologies and Innovative Research (JETIR), 7(5), 13–24. https://doi.org/10.2478/acss-2020-0018

Sasikala, R. (2017). a Comparative Analysis for Smart Water Resource Using Data Mining Tools. International Journal of Research -GRANTHAALAYAH, 5(7(SE)), 24–30. https://doi.org/10.29121/granthaalayah.v5.i7(se).2017.2039

Singh, H. (2021). Breast Cancer Analysis and Prediction by Using Machine Learning. International Journal of Research in Engineering and Science (IJRES), 9(6), 69–73.

Swetha, K., & Ranjana, R. (2020). Breast Cancer Predication Using Machine Learning and Data Mining. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6(3), 610–615.

Published
2022-03-09
How to Cite
Imran, B., Hambali, H., Subki, A., Zaeniah, Z., Yani, A., & Alfian, M. (2022). DATA MINING USING RANDOM FOREST, NAÏVE BAYES, AND ADABOOST MODELS FOR PREDICTION AND CLASSIFICATION OF BENIGN AND MALIGNANT BREAST CANCER. Jurnal Pilar Nusa Mandiri, 18(1), 37-46. https://doi.org/10.33480/pilar.v18i1.2912
Article Metrics

Abstract viewed = 239 times
PDF downloaded = 159 times